Invariant properties of the generalized canonical mappings
Janeczko, Stanisław
Banach Center Publications, Tome 50 (1999), p. 151-161 / Harvested from The Polish Digital Mathematics Library

One of the fundamental objectives of the theory of symplectic singularities is to study the symplectic invariants appearing in various geometrical contexts. In the paper we generalize the symplectic cohomological invariant to the class of generalized canonical mappings. We analyze the global structure of Lagrangian Grassmannian in the product symplectic space and describe the local properties of generic symplectic relations.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:209003
@article{bwmeta1.element.bwnjournal-article-bcpv50z1p151bwm,
     author = {Janeczko, Stanis\l aw},
     title = {Invariant properties of the generalized canonical mappings},
     journal = {Banach Center Publications},
     volume = {50},
     year = {1999},
     pages = {151-161},
     zbl = {0958.46011},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv50z1p151bwm}
}
Janeczko, Stanisław. Invariant properties of the generalized canonical mappings. Banach Center Publications, Tome 50 (1999) pp. 151-161. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv50z1p151bwm/

[000] [1] V. I. Arnol'd, S. M. Guseĭn-Zade, A. N. Varchenko, Singularities of Differentiable Maps I, Monogr. Math. 82, Birkhäuser, Boston, 1985.

[001] [2] A. P. Fordy, A. B. Shabat, and A. P. Veselov, Factorization and Poisson correspondences, Teoret. Mat. Fiz. 105:2 (1995), 225-245; reprinted in: Theoret. and Math. Phys. 105 (1995), 1369-1386. | Zbl 0865.58029

[002] [3] V. Guillemin, R. B. Melrose, A cohomological invariant of discrete dynamical systems, in: E. B. Christoffel. The influence of his work on mathematics and the physical sciences, P. L. Butzer and F. Fehér (eds.), Birkhäuser, Basel, 1981, 672-679.

[003] [4] V. Guillemin, S. Sternberg, Some problems in integral geometry and some related problems in micro-local analysis, Amer. J. Math. 101 (1979), 915-955. | Zbl 0446.58019

[004] [5] V. Guillemin, S. Sternberg, Symplectic Techniques in Physics, Cambridge Univ. Press, Cambridge, 1984. | Zbl 0576.58012

[005] [6] S. Janeczko, Classification of lagrangian stars and their symplectic invariants, J. Phys. A 31 (1998), 3677-3685. | Zbl 0907.58016

[006] [7] S. Janeczko, Generating families for images of Lagrangian submanifolds and open swallowtails, Math. Proc. Cambridge Philos. Soc. 100 (1986), 91-107. | Zbl 0635.58012

[007] [8] S. Janeczko, Constrained Lagrangian submanifolds over singular constraining varieties and discriminant varieties, Ann. Inst. H. Poincaré Phys. Théor. 46 (1987), 1-26. | Zbl 0611.58026

[008] [9] J. B. Keller, Rays, waves and asymptotics, Bull. Amer. Math. Soc. 84 (1978), 727-750. | Zbl 0393.35002

[009] [10] J. Martinet, Singularities of Smooth Functions and Maps, London Math. Soc. Lecture Note Ser. 58, Cambridge Univ. Press, Cambridge, 1982.

[010] [11] S. Marvizi, R. Melrose, Spectral invariants of convex planar regions, J. Differential Geom. 17 (1982), 475-502. | Zbl 0492.53033

[011] [12] M. Mikosz, On classification of the linear Lagrangian and isotropic subspaces, Demonstratio Math. 30 (1997), 437-450. | Zbl 0890.58015

[012] [13] J. Milnor, Morse Theory, Ann. of Math. Stud. 51, Princeton Univ. Press, Princeton, 1963.

[013] [14] A. S. Mishchenko, V. E. Shatalov, B. Yu. Sternin, Lagrangian manifolds and the method of the canonical operator (in Russian), % Lagranzhevy mnogoobraziya i metod kanonicheskogo operatora, Moskow, Nauka, Moscow, 1978.

[014] [15] R. Ranga Rao, On some explicit formulas in the theory of Weil representation, Pacific J. Math. 157 (1993), 335-371. | Zbl 0794.58017

[015] [16] F. Takens, J. White, Morse theory of double normals of immersions, Indiana Univ. Math. J. 21 (1971), 11-17. | Zbl 0228.58007

[016] [17] W. M. Tulczyjew, The Legendre transformation, Ann. Inst. H. Poincaré Sect. A 27 (1977), 101-114. | Zbl 0365.58011

[017] [18] A. Weinstein, Symplectic geometry, Bull. Amer. Math. Soc. (N.S.) 5 (1981), 1-13. | Zbl 0465.58013

[018] [19] A. Weinstein, Lectures on Symplectic Manifolds, CBMS Regional Conf. Ser. in Math. 29, Amer. Math. Soc., Providence, 1977; corrected reprint, 1979.

[019] [20] V. M. Zakalyukin, R. M. Roberts, Stability of Lagrangian manifolds with singularities (in Russian), Funktsional. Anal. i Prilozhen. 26 (1992), no. 3, 28-34; English transl.: Funct. Anal. Appl. 26 (1992), 174-178.