The rectifying developable and the spherical Darboux image of a space curve
Izumiya, Shyuichi ; Katsumi, Haruyo ; Yamasaki, Takako
Banach Center Publications, Tome 50 (1999), p. 137-149 / Harvested from The Polish Digital Mathematics Library

In this paper we study singularities of certain surfaces and curves associated with the family of rectifying planes along space curves. We establish the relationships between singularities of these subjects and geometric invariants of curves which are deeply related to the order of contact with helices.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:209002
@article{bwmeta1.element.bwnjournal-article-bcpv50z1p137bwm,
     author = {Izumiya, Shyuichi and Katsumi, Haruyo and Yamasaki, Takako},
     title = {The rectifying developable and the spherical Darboux image of a space curve},
     journal = {Banach Center Publications},
     volume = {50},
     year = {1999},
     pages = {137-149},
     zbl = {0973.58023},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv50z1p137bwm}
}
Izumiya, Shyuichi; Katsumi, Haruyo; Yamasaki, Takako. The rectifying developable and the spherical Darboux image of a space curve. Banach Center Publications, Tome 50 (1999) pp. 137-149. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv50z1p137bwm/

[000] [1] J. W. Bruce, P. J. Giblin, Curves and Singularities, 2nd ed., Cambridge Univ. Press, Cambridge, 1992. | Zbl 0770.53002

[001] [2] M. P. do Carmo, Differential Geometry of Curves and Surfaces, Prentice-Hall, Englewood Cliffs, 1976.

[002] [3] J. P. Cleave, The form of the tangent developable at points of zero torsion on space curves, Math. Proc. Cambridge Philos. Soc. 88 (1980), 403-407. | Zbl 0462.53003

[003] [4] G. Ishikawa, Determinacy of envelope of the osculating hyperplanes to a curve, Bull. London Math. Soc. 25 (1993), 603-610. | Zbl 0801.58006

[004] [5] G. Ishikawa, Developable of a curve and its determinacy relative to the osculation-type, Quart. J. Math. Oxford Ser. (2) 46 (1995), 437-451. | Zbl 0854.53001

[005] [6] G. Ishikawa, Topological classification of the tangent developable of space curves, Hokkaido Univ. Preprint Series 341 (1996).

[006] [7] J. Koenderink, Solid Shape, MIT Press, Cambridge, MA, 1990.

[007] [8] D. Mond, On the tangent developable of a space curve, Math. Proc. Cambridge Philos. Soc. 91 (1982), 351-355. | Zbl 0495.58005

[008] [9] D. Mond, Singularities of the tangent developable surface of a space curve, Quart. J. Math. Oxford Ser. (2) 40 (1989), 79-91. | Zbl 0706.58006

[009] [10] I. R. Porteous, The normal singularities of submanifold, J. Differential Geom. 5 (1971), 543-564. | Zbl 0226.53010

[010] [11] I. R. Porteous, Geometric Differentiation for the Intelligence of Curves and Surfaces, Cambridge Univ. Press, Cambridge, 1994. | Zbl 0806.53001

[011] [12] O. P. Shcherbak, Projectively dual space curves and Legendre singularities (in Russian), Trudy Tbiliss. Univ. 232-233 (1982), 280-336; English translation: Selecta Math. Soviet. 5 (1986), 391-421.