We consider a contractible closure of the space of Legendrian knots in the standard contact 3-space. We show that in this context the space of finite-type complex-valued invariants of Legendrian knots is isomorphic to that of framed knots in with an extra order 1 generator (Maslov index) added.
@article{bwmeta1.element.bwnjournal-article-bcpv50z1p107bwm, author = {Goryunov, Victor and Hill, Jonathan}, title = {Finite-type invariants of Legendrian knots in the 3-space: Maslov index as an order 1 invariant}, journal = {Banach Center Publications}, volume = {50}, year = {1999}, pages = {107-122}, zbl = {0948.57005}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv50z1p107bwm} }
Goryunov, Victor; Hill, Jonathan. Finite-type invariants of Legendrian knots in the 3-space: Maslov index as an order 1 invariant. Banach Center Publications, Tome 50 (1999) pp. 107-122. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv50z1p107bwm/
[000] [1] V. I. Arnol'd, Plane curves, their invariants, perestroikas and classifications, in: Singularities and Bifurcations, V. I. Arnold (ed.), Adv. Soviet Math. 21, Amer. Math. Soc., Providence, 1994, 33-91. | Zbl 0864.57027
[001] [2] V. I. Arnol'd, Topological Invariants of Plane Curves and Caustics, University Lecture Series 5, Amer. Math. Soc., Providence, 1994.
[002] [3] V. I. Arnol'd, Invariants and perestroikas of plane fronts (in Russian), Trudy Mat. Inst. Steklov. 209 (1995), 14-64; English transl.: Proc. Steklov Inst. Mat. 209 (1995), 11-56.
[003] [4] D. Bar-Natan, On the Vassiliev knot invariants, Topology 34 (1995), 423-472. | Zbl 0898.57001
[004] [5] V. V. Goryunov, Vassiliev type invariants in Arnold’s -theory of plane curves without direct self-tangencies, Topology 37 (1998), 603-620. | Zbl 0909.57002
[005] [6] V. V. Goryunov, Vassiliev invariants of knots in and in a solid torus, in: Differential and Symplectic Topology of Knots and Curves, S. Tabachnikov (ed.), Amer. Math. Soc. Transl. Ser. 2, 190, Amer. Math. Soc., Providence, 1999, 37-59. | Zbl 0946.57017
[006] [7] V. V. Goryunov, Finite order invariants of framed knots in a solid torus and in Arnold’s -theory of plane curves, in: Geometry and Physics, J. E. Andersen, J. Dupont, H. Pedersen and A. Swann (eds.), Lecture Notes in Pure and Appl. Math. 184, Marcel Dekker, New York, 1997, 549-556. | Zbl 0871.57007
[007] [8] J. W. Hill, Vassiliev-type invariants of planar fronts without dangerous self-tangencies, C. R. Acad. Sci. Paris Sér. I Math. 324 (1997), 537-542. | Zbl 0881.57003
[008] [9] M. Kontsevich, Vassiliev's knot invariants, in: I. M. Gel'fand Seminar, S. Gel'fand, S. Gindikin (eds.), Adv. Soviet Math. 16, Part 2, Amer. Math. Soc., Providence, 1993, 137-150. | Zbl 0839.57006
[009] [10] V. A. Vassiliev, Cohomology of knot spaces, in: Theory of Singularities and its Applications, V. I. Arnol'd (ed.), Adv. Soviet Math. 1, Amer. Math. Soc., Providence, 1990, 23-69.