A multiplicity result for a system of real integral equations by use of the Nielsen number
Borisovich, Andrei ; Kucharski, Zygfryd ; Marzantowicz, Wacław
Banach Center Publications, Tome 50 (1999), p. 9-18 / Harvested from The Polish Digital Mathematics Library

We prove an existence and multiplicity result for solutions of a nonlinear Urysohn type equation (2.14) by use of the Nielsen and degree theory in an annulus in the function space.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:208971
@article{bwmeta1.element.bwnjournal-article-bcpv49i1p9bwm,
     author = {Borisovich, Andrei and Kucharski, Zygfryd and Marzantowicz, Wac\l aw},
     title = {A multiplicity result for a system of real integral equations by use of the Nielsen number},
     journal = {Banach Center Publications},
     volume = {50},
     year = {1999},
     pages = {9-18},
     zbl = {0945.45003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv49i1p9bwm}
}
Borisovich, Andrei; Kucharski, Zygfryd; Marzantowicz, Wacław. A multiplicity result for a system of real integral equations by use of the Nielsen number. Banach Center Publications, Tome 50 (1999) pp. 9-18. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv49i1p9bwm/

[000] [BKM1] A. Yu. Borisovich, Z. Kucharski and W. Marzantowicz, Nielsen number and lower estimate for the number of solutions to a certain system of nonlinear integral equations, in: Applied Aspects of Global Analysis. New Developments in Global Analysis series, Voronezh University Press, 1994, 3-11. | Zbl 0853.45009

[001] [BKM2] A. Yu. Borisovich, Z. Kucharski and W. Marzantowicz, Relative Nielsen number and a lower estimate of the number of components of an algebraic set, in: Global and Stochastic Analysis. New Developments in Global Analysis series, Voronezh University Press, 1995, 3-14.

[002] [N1] J. Nielsen, Über die Minimalzahl der Fixpunkte bei Abbildungstypen der Ringflächen, Math. Ann. 82 (1921), 83-93. | Zbl 47.0527.03

[003] [N2] J. Nielsen, Untersuchungen zur Topologie der geschlossenen zweiseitigen Flächen, I-III, Acta Math. 50, 53, 58 (1927, 1929, 1932), 189-358, 1-76, 87-167.

[004] [W] F. Wecken, Fixpunktklassen, I-III, Math. Ann. 117, 118, 118 (1941, 1942, 1942), 659-671, 216-234, 544-577.

[005] [J] B. J. Jiang, Lectures on Nielsen Fixed Point Theory, Contemp. Math. 14 (1983). | Zbl 0512.55003

[006] [Br1] R. Brown, A topological bound on the number of distinct zeros of an analytic function, Pacific J. Math. 118 (1983), 53-58.

[007] [Br2] R. Brown, Nielsen fixed point theory and parametrized differential equations, Contemp. Math. 72 (1988), 33-46.

[008] [Br3] R. Brown, Retraction methods in the Nielsen fixed point theory, Pacific J. Math. 115 (1984), 277-297. | Zbl 0514.55003

[009] [Br4] R. Brown, The Lefschetz Fixed Point Theorem, Chicago, 1972.

[010] [Sch] H. Schirmer, A relative Nielsen number, Pacific J. Math. 122 (1986), 253-266.

[011] [K] Kiang Tsai-han, The Theory of Fixed Point Classes, Springer, Berlin, 1989. | Zbl 0676.55001

[012] [S] K. Scholz, The Nielsen fixed point theory for non-compact spaces, Rocky Mountain J. Math. 4 (1974), 81-87. | Zbl 0275.55013

[013] [F] M. Fečkan, Nielsen fixed point theory and nonlinear equations, J. Differential Equations 106 (1993), 312-331. | Zbl 0839.47041