In this paper we prove trace formulas for the Reidemeister numbers of group endomorphisms and the rationality of the Reidemeister zeta function in the following cases: the group is finitely generated and the endomorphism is eventually commutative; the group is finite; the group is a direct sum of a finite group and a finitely generated free Abelian group; the group is finitely generated, nilpotent and torsion free. We connect the Reidemeister zeta function of an endomorphism of a direct sum of a finite group and a finitely generated free Abelian group with the Lefschetz zeta function of the unitary dual map, and as a consequence obtain a connection of the Reidemeister zeta function with Reidemeister torsion. We also prove congruences for Reidemeister numbers which are the same as those found by Dold for Lefschetz numbers.
@article{bwmeta1.element.bwnjournal-article-bcpv49i1p77bwm, author = {Fel'shtyn, Alexander and Hill, Richard}, title = {Dynamical zeta functions, congruences in Nielsen theory and Reidemeister torsion}, journal = {Banach Center Publications}, volume = {50}, year = {1999}, pages = {77-116}, zbl = {0963.37019}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv49i1p77bwm} }
Fel'shtyn, Alexander; Hill, Richard. Dynamical zeta functions, congruences in Nielsen theory and Reidemeister torsion. Banach Center Publications, Tome 50 (1999) pp. 77-116. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv49i1p77bwm/
[000] [1] D. Anosov, The Nielsen number of maps of nilmanifolds, Russian Math. Surveys 40 (1985), 149-150. | Zbl 0594.55002
[001] [2] M. Artin and B. Mazur, On periodic points, Ann. of Math. 81 (1965), 82-99.
[002] [3] I. Babenko and S. Bogatyi, Private communication.
[003] [4] J. S. Birman, Braids, links and mapping class groups, Ann. Math. Studies 82, Princeton Univ. Press, Princeton, 1974.
[004] [5] R. Bowen and O. Lanford, Zeta functions of restrictions of the shift transformation, Proc. Global Anal. 1968, 43-49. | Zbl 0211.56501
[005] [6] J. Cheeger, Analytic torsion and the heat equation, Ann. of Math. 109 (1979), 259-322. | Zbl 0412.58026
[006] [7] A. Dold, Fixed point indices of iterated maps, Invent. Math. 74 (1983), 419-435. | Zbl 0583.55001
[007] [8] C. Epstein, The spectral theory of geometrically periodic hyperbolic 3-manifolds, Mem. AMS, 335 (1985). | Zbl 0584.58047
[008] [9] E. Fadell and S. Husseini, The Nielsen number on surfaces, in: Topological methods in nonlinear functional analysis, Contemp. Math. 21, AMS, 1983, 59-98. | Zbl 0563.55001
[009] [10] A. Fathi and M. Shub, Some dynamics of pseudo-Anosov diffeomorphisms, Astérisque 66-67 (1979), 181-207. | Zbl 0446.57022
[010] [11] A. L. Fel'shtyn, New zeta function in dynamics, in: Tenth Internat. Conf. on Nonlinear Oscillations, Varna, Abstracts of Papers, Bulgar. Acad. Sci., 1984, 208.
[011] [12] A. L. Fel'shtyn, A new zeta function in Nielsen theory and the universal product formula for dynamic zeta functions, Funktsional. Anal. i Prilozhen. 21 (2) (1987), 90-91 (in Russian); English transl.: Functional Anal. Appl. 21 (1987), 168-170.
[012] [13] A. L. Fel'shtyn, Zeta functions in Nielsen theory, Funktsional. Anal. i Prilozhen. 22 (1) (1988), 87-88 (in Russian); English transl.: Functional Anal. Appl. 22 (1988), 76-77.
[013] [14] A. L. Fel'shtyn, New zeta functions for dynamical systems and Nielsen fixed point theory, in: Lecture Notes in Math. 1346, Springer, 1988, 33-55.
[014] [15] A. L. Fel'shtyn, The Reidemeister zeta function and the computation of the Nielsen zeta function, Colloq. Math. 62 (1991), 153-166.
[015] [16] A. L. Fel'shtyn and R. Hill, Dynamical zeta functions, Nielsen theory and Reidemeister torsion, in: Nielsen Theory and Dynamical Systems, Contemp. Math. 152, AMS, 1993, 43-69. | Zbl 0793.58028
[016] [17] A. L. Fel'shtyn and R. Hill, The Reidemeister zeta function with applications to Nielsen theory and a connection with Reidemeister torsion, K-theory 8 (1994), 367-393. | Zbl 0814.58033
[017] [18] A. L. Fel'shtyn, R. Hill and P. Wong, Reidemeister numbers of equivariant maps, Topology Appl. 67 (1995), 119-131. | Zbl 0845.55002
[018] [19] A. L. Fel'shtyn and V. B. Pilyugina, The Nielsen zeta function, Funktsional. Anal. i Prilozhen. 19 (4) (1985), 61-67 (in Russian); English transl.: Functional Anal. Appl. 19 (1985), 300-305. | Zbl 0603.58041
[019] [20] J. Franks, Homology and Dynamical Systems, CMBS Regional Conf. Ser. Math. 49 (1982).
[020] [21] W. Franz, Über die Torsion einer Überdeckung, J. Reine Angew. Math. 173 (1935), 245-254.
[021] [22] D. Fried, Periodic points and twisted coefficients, in: Lect. Notes in Math. 1007 (1983), 261-293.
[022] [23] D. Fried, Homological identities for closed orbits, Invent. Math. 71 (1983), 219-246.
[023] [24] D. Fried, Lefschetz formula for flows, in: The Lefschetz centennial conference, Contemp. Math. 58, AMS, 1987, 19-69.
[024] [25] M. Gromov, Groups of polynomial growth and expanding maps, Publ. Math. 53 (1981), 53-78. | Zbl 0474.20018
[025] [26] M. Gromov, Hyperbolic groups, in: Essays in Group Theory, Math. Sci. Res. Inst. Publ. 8, 1987, 75-265.
[026] [27] P. R. Heath, Product formulae for Nielsen numbers of fibre maps, Pacific J. Math. 117 (2) (1985), 267-289. | Zbl 0571.55002
[027] [28] B. Jiang, Lectures on Nielsen Fixed Point Theory, Contemp. Math. 14, AMS, 1983.
[028] [29] B. Jiang, Estimation of the number of periodic orbits, Preprint of Universität Heidelberg, Mathematisches Institut, Heft 65, Mai 1993.
[029] [30] B. Jiang and S. Wang, Lefschetz numbers and Nielsen numbers for homeomorphisms on aspherical manifolds, in: Topology - Hawaii, World Sci., Singapore, 1992, 119-136. | Zbl 1039.55502
[030] [31] S. Lang, Algebra, Addison-Wesley, 1993.
[031] [32] A. A. Kirillov, Elements of the Theory of Representations, Springer Verlag, 1976.
[032] [33] A. Mal'cev, On a class of homogeneous spaces, Izv. Akad. Nauk SSSR Ser. Mat. 13 (1949), 9-32 (in Russian).
[033] [34] A. Manning, Axiom A diffeomorphisms have rational zeta function, Bull. London Math. Soc. 3 (1971), 215-220. | Zbl 0219.58007
[034] [35] J. Milnor, Infinite cyclic covers, in: Proc. Conf. 'Topology of Manifolds' in Michigan 1967, 115-133.
[035] [36] J. Milnor, A duality theorem for the Reidemeister torsion, Ann. of Math. 76 (1962), 137-147. | Zbl 0108.36502
[036] [37] W. Müller, Analytic torsion and R-torsion of Riemannian manifolds, Adv. in Math. 28 (1978), 233-305. | Zbl 0395.57011
[037] [38] B. Norton-Odenthal, Ph. D. Thesis, University of Wisconsin, Madison, 1991.
[038] [39] W. Parry and M. Pollicott, Zeta functions and the periodic structure of hyperbolic dynamics, Astérisque 187-188 (1990). | Zbl 0726.58003
[039] [40] D. Ray and I. Singer, R-torsion and the Laplacian on Riemannian manifolds, Adv. in Math. 7 (1971), 145-210. | Zbl 0239.58014
[040] [41] K. Reidemeister, Automorphism von Homotopiekettenringen, Math. Ann. 112 (1936), 586-593.
[041] [42] G. de Rham, Complexes à automorphismes et homéomorphie différentiable, Ann. Inst. Fourier 2 (1950), 51-67.
[042] [43] W. Rudin, Fourier Analysis on Groups, Interscience, 1962.
[043] [44] D. Ruelle, Zeta function for expanding maps and Anosov flows, Invent. Math. 34 (1976), 231-242. | Zbl 0329.58014
[044] [45] M. Shub, Endomorphisms of compact differentiable manifolds, Amer. J. Math. 91 (1969), 175-179.
[045] [46] H. Steinlein, Ein Satz über den Leray-Schauderschen Abbildungsgrad, Math. Z. 126 (1972), 176-208. | Zbl 0223.47023
[046] [47] W. P. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. AMS 19 (1988), 417-431. | Zbl 0674.57008
[047] [48] F. Wecken, Fixpunktklassen II, Math. Ann. 118 (1942), 216-234.
[048] [49] A. Weil, Numbers of solutions of equations in finite fields, Bull. AMS 55 (1949), 497-508. | Zbl 0032.39402
[049] [50] P. P. Zabreĭko and M. A. Krasnosel'skiĭ, Iterations of operators and fixed points, Dokl. Akad. Nauk SSSR 196 (1971), 1006-1009 (in Russian).