We present J. Jezierski's approach to the Nielsen fixed point theory for a broad class of multivalued mappings [Je1]. We also describe some generalizations and different techniques existing in the literature.
@article{bwmeta1.element.bwnjournal-article-bcpv49i1p69bwm, author = {Dzedzej, Zdzis\l aw}, title = {On the Nielsen fixed point theory for multivalued mappings}, journal = {Banach Center Publications}, volume = {50}, year = {1999}, pages = {69-75}, zbl = {0942.55004}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv49i1p69bwm} }
Dzedzej, Zdzisław. On the Nielsen fixed point theory for multivalued mappings. Banach Center Publications, Tome 50 (1999) pp. 69-75. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv49i1p69bwm/
[000] [An] J. Andres, Multiple bounded solutions of differential inclusions: The Nielsen theory approach, Preprint (1997).
[001] [AC] J. P. Aubin and A. Cellina, Differential Inclusions, Springer-Verlag, 1984.
[002] [Bro] R. F. Brown, The Lefschetz Fixed Point Theorem, Scott, Foresman & Co., Glenview Ill., 1971.
[003] [Do] A. Dold, Lectures on Algebraic Topology, Springer-Verlag, 1972.
[004] [Dz1] Z. Dzedzej, Fixed point index theory for a class of non-acyclic multivalued maps, Dissertationes Math. 253 (1985).
[005] [Dz2] Z. Dzedzej, On Nielsen and Reidemeister relations for set-valued symmetric product maps, CRM Barcelona 76 (1989), 1-8.
[006] [Gor] L. Górniewicz, Topological approach to differential inclusions, in: Topol. Methods in Diff. Equations and Inclusions, A. Granas and M. Frigon (eds.), NATO ASI 472, 129-190.
[007] [GGK] L. Górniewicz, A. Granas and W. Kryszewski, On the homotopy method in the fixed point index theory for multivalued mappings of compact ANR's, J. Math. Anal. Appl. 161 (1991), 457-473. | Zbl 0757.54019
[008] [Je1] J. Jezierski, The Nielsen relation for multivalued maps, Serdica 13 (1987), 174-181. | Zbl 0652.55004
[009] [Je2] J. Jezierski, An example of finitely-valued fixed point free map, Zesz. Nauk. IM UG 6 (1987), 87-93. | Zbl 0761.54025
[010] [Jia] B. Jiang, Lectures on Nielsen Fixed Point Theory, Contemp. Math. 14, AMS, Providence, R.I., 1983.
[011] [KrM] W. Kryszewski and D. Miklaszewski, The Nielsen number of set-valued maps. An approximation approach, Serdica 15 (1989), 336-344. | Zbl 0712.55003
[012] [Mas] S. Masih, On the fixed point index and Nielsen fixed point theorem for symmetric product mappings, Fund. Math. 102 (1979), 143-158. | Zbl 0401.55003
[013] [Mik] D. Miklaszewski, A reduction of the Nielsen fixed point theorem for symmetric product maps to the Lefschetz theorem, Fund. Math. 135 (1990), 175-176. | Zbl 0715.55004
[014] [S1] H. Schirmer, An index and a Nielsen number for n-valued multifunctions, Fund. Math. 124 (1984), 207-219. | Zbl 0543.55003
[015] [S2] H. Schirmer, A minimum theorem for n-valued multifunctions, Fund. Math. 126 (1985), 83-92. | Zbl 0609.55001
[016] [S3] H. Schirmer, A fixed point index for bimaps, Fund. Math. 134 (1990), 93-104. | Zbl 0708.55001
[017] [S4] H. Schirmer, The least number of fixed points of bimaps, Fund. Math. 137 (1991), 1-8. | Zbl 0726.55001