Equivariant Nielsen theory
Wong, Peter
Banach Center Publications, Tome 50 (1999), p. 253-258 / Harvested from The Polish Digital Mathematics Library
Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:208965
@article{bwmeta1.element.bwnjournal-article-bcpv49i1p253bwm,
     author = {Wong, Peter},
     title = {Equivariant Nielsen theory},
     journal = {Banach Center Publications},
     volume = {50},
     year = {1999},
     pages = {253-258},
     zbl = {0940.55002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv49i1p253bwm}
}
Wong, Peter. Equivariant Nielsen theory. Banach Center Publications, Tome 50 (1999) pp. 253-258. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv49i1p253bwm/

[000] [BoG] L. Borsari and D. Gonçalves, G-deformation to fixed point free maps via obstruction theory, unpublished (1989).

[001] [B] R. Brooks, Certain subgroups of the fundamental group and the number of roots of f(x)=a, Amer. J. Math. 95 (1973), 720-728. | Zbl 0319.55015

[002] [Br] R. F. Brown, Nielsen fixed point theory on manifolds, these proceedings.

[003] [Du] H. Duan, The Lefschetz number of selfmaps of Lie groups, Proc. Amer. Math. Soc. 104 (1988), 1284-1286. | Zbl 0689.55005

[004] [F] E. Fadell, Two vignettes in fixed point theory, in: Topological Fixed Point Theory and Applications (Tianjin, 1988), B. Jiang (ed.), Lecture Notes in Math. 1411, Springer, Berlin, 1989, 46-51.

[005] [FW] E. Fadell and P. Wong, On deforming G-maps to be fixed point free, Pacific J. Math. 132 (1988), 277-281. | Zbl 0612.58007

[006] [Fa] P. Fagundes, Equivariant Nielsen coincidence theory, in: 10th Brazilian Topology Meeting (São Carlos, 1996), P. Schweitzer (ed.), Matemática Contempoȓanea 13, Sociedade Brasileira de Matemática, Rio de Janeiro, 1997, 117-142.

[007] [GW] D. Gonçalves and P. Wong, Homogeneous spaces in coincidence theory, in: 10th Brazilian Topology Meeting (São Carlos, 1996), P. Schweitzer (ed.), Matemática Contempoȓanea 13, Sociedade Brasileira de Matemática, Rio de Janeiro, 1997, 143-158.

[008] [J] B. Jiang, Lectures on Nielsen Fixed Point Theory, Contemp. Math. 14, Amer. Math. Soc., Providence, 1983. | Zbl 0512.55003

[009] [K] T. Kiang, The Theory of Fixed Point Classes, Science Press, Springer, Berlin-Beijing, 1989. | Zbl 0676.55001

[010] [S] H. Schirmer, Mindestzahlen von Koinzidenzpunkten, J. Reine Angew. Math. 194 (1955), 21-39.

[011] [V] A. Vidal, Äquivariante Hindernistheorie für G-Deformationen, Dissertation, Universität Heidelberg, Heidelberg, 1985.

[012] [Wi] D. Wilczyński, Fixed point free equivariant homotopy classes, Fund. Math. 123 (1984), 47-60. | Zbl 0548.55002

[013] [W1] P. Wong, Equivariant Nielsen fixed point theory and periodic points, in: Nielsen Theory and Dynamical Systems (Mt. Holyoke, 1992), C. McCord (ed.), Contemp. Math. 152, Amer. Math. Soc., Providence, 1993, 341-350.

[014] [W2] P. Wong, Fixed point theory for homogeneous spaces, Amer. J. Math. 120 (1998), 23-42. | Zbl 0908.55002

[015] [W3] P. Wong, Root theory for G-maps, in preparation.

[016] [W4] P. Wong, Equivariant Nielsen fixed point theory for G-maps, Pacific J. Math. 150 (1991), 179-200. | Zbl 0691.55004

[017] [W5] P. Wong, Equivariant Nielsen numbers, Pacific J. Math. 159 (1993), 153-175. | Zbl 0739.55001