Nielsen fixed point theory on manifolds
Brown, Robert
Banach Center Publications, Tome 50 (1999), p. 19-27 / Harvested from The Polish Digital Mathematics Library

The study of fixed points of continuous self-maps of compact manifolds involves geometric topology in a significant way in topological fixed point theory. This survey will discuss some of the questions that have arisen in this study and indicate our present state of knowledge, and ignorance, of the answers to them. We will limit ourselves to the statement of facts, without any indication of proof. Thus the reader will have to consult the references to find out how geometric topology has contributed to our knowledge in this area. But we hope this overview can supply a framework for a more detailed investigation of this important and, as we shall see, very active branch of fixed point theory.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:208959
@article{bwmeta1.element.bwnjournal-article-bcpv49i1p19bwm,
     author = {Brown, Robert},
     title = {Nielsen fixed point theory on manifolds},
     journal = {Banach Center Publications},
     volume = {50},
     year = {1999},
     pages = {19-27},
     zbl = {0938.55002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv49i1p19bwm}
}
Brown, Robert. Nielsen fixed point theory on manifolds. Banach Center Publications, Tome 50 (1999) pp. 19-27. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv49i1p19bwm/

[000] [1] D. Anosov, The Nielsen number of maps of nilmanifolds, Russian Math. Surveys 40 (1985), 149-150. | Zbl 0594.55002

[001] [2] M. Bestvina and M. Handel, Train tracks for surface homeomorphisms, Topology 34 (1995), 109-140. | Zbl 0837.57010

[002] [3] R. Brown, The Lefschetz Fixed Point Theorem, Scott-Foresman, 1971.

[003] [4] R. Brown, Wecken properties for manifolds, in: Proceedings of the Conference on Nielsen Theory and Dynamical Systems, Contemp. Math. 152, 1993, 9-21. | Zbl 0816.55001

[004] [5] R. Brown and B. Sanderson, Fixed points of boundary-preserving maps of surfaces, Pacific J. Math. 158 (1993), 243-264. | Zbl 0786.57005

[005] [6] O. Davey, E. Hart and K. Trapp, Computation of Nielsen numbers for maps of closed surfaces, Trans. Amer. Math. Soc. (to appear). | Zbl 0861.55003

[006] [7] D. Dimovski, One-parameter fixed point indices, Pacific J. Math. 164 (1994), 263-297. | Zbl 0796.55001

[007] [8] D. Dimovski and R. Geoghegan, One-parameter fixed point theory, Forum Math. 2 (1990), 125-154. | Zbl 0692.55002

[008] [9] E. Fadell and S. Husseini, The Nielsen number on surfaces, in: Proceedings of the Special Session on Fixed Point Theory, Contemp. Math. 21, 1983, 59-98. | Zbl 0563.55001

[009] [10] R. Geoghegan and A. Nicas, Parametrized Lefschetz-Nielsen fixed point theory and Hochschild homology traces, Amer. J. Math. 116 (1994), 397-446. | Zbl 0812.55001

[010] [11] J. Harrison and J. Stasheff, Families of H-spaces, Quart. J. Math. 22 (1971), 347-351. | Zbl 0219.55008

[011] [12] B. Jiang, Estimation of the Nielsen numbers, Chinese Math. 5 (1964), 330-339.

[012] [13] B. Jiang, Lectures on Nielsen Fixed Point Theory, Contemp. Math. 14, 1983. | Zbl 0512.55003

[013] [14] B. Jiang, Fixed points and braids, II, Math. Ann. 272 (1985), 249-256. | Zbl 0617.55001

[014] [15] B. Jiang, Commutativity and Wecken properties for fixed points of surfaces and 3-manifolds, Topology Appl. 53 (1993), 221-228. | Zbl 0791.55002

[015] [16] B. Jiang and J. Guo, Fixed points of surface diffeomorphisms, Pacific J. Math. 160 (1993), 67-89. | Zbl 0829.55001

[016] [17] M. Kelly, Minimizing the number of fixed points for self-maps of compact surfaces, Pacific J. Math. 126 (1987), 81-123. | Zbl 0571.55003

[017] [18] M. Kelly, Minimizing the cardinality of the fixed point set for selfmaps of surfaces with boundary, Mich. Math. J. 39 (1992), 201-217. | Zbl 0767.55001

[018] [19] M. Kelly, The relative Nielsen number and boundary-preserving surface maps, Pacific J. Math. 161 (1993), 139-153. | Zbl 0794.55002

[019] [20] M. Kelly, The Nielsen number as an isotopy invariant, Topology Appl. 62 (1995), 127-143. | Zbl 0839.55002

[020] [21] M. Kelly, Nielsen numbers and homeomorphisms of geometric 3-manifolds, Topology Proc. 19 (1994), 149-160. | Zbl 0851.55002

[021] [22] M. Kelly, Computing Nielsen numbers of surface homeomorphisms, Topology 35 (1996), 13-25. | Zbl 0855.55002

[022] [23] E. Keppelmann and C. McCord, The Anosov theorem for exponential solvmanifolds, Pacific J. Math. 170 (1995), 143-159. | Zbl 0856.55003

[023] [24] T. Kiang, The Theory of Fixed Point Classes, Springer, 1989. | Zbl 0676.55001

[024] [25] C. McCord, Computing Nielsen numbers, in: Proceedings of the Conference on Nielsen Theory and Dynamical Systems, Contemp. Math. 152, 1993, 249-267.

[025] [26] J. Nielsen, Untersuchungen zur Topologie der geschlossenen zweiseitigen Flächen, Acta Math. 50 (1927), 189-358. | Zbl 53.0545.12

[026] [27] J. Nolan, Fixed points of boundary-preserving maps of punctured discs, Topology Appl. (to appear). | Zbl 0899.55001

[027] [28] H. Schirmer, A relative Nielsen number, Pacific J. Math. 122 (1986), 459-473. | Zbl 0553.55001

[028] [29] E. Spanier, Algebraic Topology, McGraw-Hill, 1966.

[029] [30] J. Wagner, Classes of Wecken maps of surfaces with boundary, Topology Appl. (to appear). | Zbl 1001.55005

[030] [31] J. Wagner, An algorithm for calculating the Nielsen number on surfaces with boundary, preprint. | Zbl 0910.55001

[031] [32] F. Wecken, Fixpunktklassen, III, Math. Ann. 118 (1942), 544-577.

[032] [33] P. Wong, Equivariant Nielsen numbers, Pacific J. Math. 159 (1993), 153-175. | Zbl 0739.55001

[033] [34] P. Wong, Fixed point theory for homogeneous spaces, Amer. J. Math. 120 (1998), 23-42. | Zbl 0908.55002