We give an outline of the Nielsen coincidence theory emphasizing differences between the oriented and non-oriented cases.
@article{bwmeta1.element.bwnjournal-article-bcpv49i1p189bwm, author = {Jezierski, Jerzy}, title = {On generalizing the Nielsen coincidence theory to non-oriented manifolds}, journal = {Banach Center Publications}, volume = {50}, year = {1999}, pages = {189-202}, zbl = {0960.55001}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv49i1p189bwm} }
Jezierski, Jerzy. On generalizing the Nielsen coincidence theory to non-oriented manifolds. Banach Center Publications, Tome 50 (1999) pp. 189-202. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv49i1p189bwm/
[000] [B] R. F. Brown, The Lefschetz Fixed Point Theorem, Glenview, New York, 1971. | Zbl 0216.19601
[001] [D] R. Dobreńko, The obstruction to the deformation of a map out of a space, Dissertationes Math. (Rozprawy Mat.) 295 (1990). | Zbl 0728.55002
[002] [DJ] R. Dobreńko and J. Jezierski, The coincidence Nielsen theory on non-orientable manifolds, Rocky Mountain J. Math. 23 (1993), 67-85. | Zbl 0787.55003
[003] [DK] R. Dobreńko and Z. Kucharski, On the generalization of the Nielsen number, Fund. Math. 134 (1990), 1-14. | Zbl 0719.55002
[004] [Dl] A. Dold, Lectures on Algebraic Topology, Springer, New York, 1972.
[005] [G] D. L. Gonçalves, Indices for coincidence classes and the Lefschetz formula for non-oriented manifolds, preprint, Math. Institut, Univ. Heidelberg.
[006] [GJ] D. L. Gonçalves and J. Jezierski, Lefschetz coincidence formula on non-orientable manifolds, Fund. Math. 153 (1997), 1-23. | Zbl 0884.55001
[007] [H] M. Hirsch, Differential Topology, Springer, New York, 1976.
[008] [Je1] J. Jezierski, The Nielsen number product formula for coincidences, Fund. Math. 134 (1989), 183-212. | Zbl 0715.55002
[009] [Je2] J. Jezierski, The semi-index product formula, Fund. Math. 140 (1992), 99-120. | Zbl 0811.55003
[010] [Je3] J. Jezierski, The coincidence Nielsen number for maps into real projective spaces, Fund. Math. 140 (1992), 121-136. | Zbl 0811.55002
[011] [Je4] J. Jezierski, The Nielsen coincidence theory on topological manifolds, Fund. Math. 143 (1993), 167-178. | Zbl 0789.55002
[012] [Ji1] B. J. Jiang, Lectures on the Nielsen Fixed Point Theory, Contemp. Math. 14, Amer. Math. Soc., Providence, 1983.
[013] [Ji2] B. J. Jiang, Fixed point classes from a differential viewpoint, in: Lecture Notes in Math. 886, Springer, 1981, 163-170.
[014] [L] S. Lefschetz, Intersections and transformations of complexes and manifolds, TAMS 28 (1926) 1-49. | Zbl 52.0572.02
[015] [N1] J. Nielsen, Über die Minimalzahl der Fixpunkte bei Abbildungstypen der Ringflächen, Math. Ann. 82 (1929), 83-93. | Zbl 47.0527.03
[016] [N2] J. Nielsen, Untersuchungen zur Topologie der geschlossenen zweiseitigen Flächen, I, II, III, Acta Math. 50 (1927), 189-358; 53 (1929), 1-76; 58 (1932), 87-167.
[017] [Sch] H. Schirmer, Mindestzahlen von Koinzidenzpunkten, J. Reine Angew. Math. 194 (1955), 21-39.
[018] [Sp1] E. Spanier, Algebraic Topology, McGraw-Hill, New York, 1966.
[019] [Sp2] E. Spanier, Duality in topological manifolds, in: Colloque de Topologie Tenu à Bruxelles (Centre de Recherche Mathématiques), 1966, 91-111.
[020] [V] J. Vick, Homology Theory, Academic Press, New York, 1973.
[021] [Y] C. Y. You, Fixed points of a fibre map, Pacific J. Math. 100 (1982), 217-241.