The relationship between fixed point theory and K-theory is explained, both classical Nielsen theory (versus ) and 1-parameter fixed point theory (versus ). In particular, various zeta functions associated with suspension flows are shown to come in a natural way as “traces” of “torsions” of Whitehead and Reidemeister type.
@article{bwmeta1.element.bwnjournal-article-bcpv49i1p137bwm, author = {Geoghegan, Ross and Nicas, Andrew}, title = {Fixed point theory and the K-theoretic trace}, journal = {Banach Center Publications}, volume = {50}, year = {1999}, pages = {137-149}, zbl = {0944.55003}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv49i1p137bwm} }
Geoghegan, Ross; Nicas, Andrew. Fixed point theory and the K-theoretic trace. Banach Center Publications, Tome 50 (1999) pp. 137-149. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv49i1p137bwm/
[000] [Ba] H. Bass, Euler characteristics and characters of discrete groups, Invent. Math. 35 (1976), 155-196. | Zbl 0365.20008
[001] [B] R. F. Brown, The Lefschetz Fixed Point Theorem, Scott Foresman, Chicago, 1971. | Zbl 0216.19601
[002] [Br] K. S. Brown, Cohomology of Groups, Springer-Verlag, New York, 1982.
[003] [BG] K. S. Brown and R. Geoghegan, An infinite dimensional torsion-free group, Invent. Math. 77 (1984), 367-381. | Zbl 0557.55009
[004] [C] M. M. Cohen, A Course in Simple-Homotopy Theory, Springer-Verlag, New York, 1973. | Zbl 0261.57009
[005] [DG] D. Dimovski and R. Geoghegan, One-parameter fixed point theory, Forum Math. 2 (1990), 125-154. | Zbl 0692.55002
[006] [F] D. Fried, Homological identities for closed orbits, Invent. Math. 71 (1983), 419-442. | Zbl 0512.58023
[007] [G1] R. Geoghegan, Fixed points in finitely dominated compacta: the geometric meaning of a conjecture of H. Bass, in: Shape Theory and Geometric Topology, Lecture Notes in Math. 870, Springer-Verlag, New York, 1981, 6-22.
[008] [G2] R. Geoghegan, Nielsen fixed point theory, in: Handbook of Geometric Topology, (to be published by Elsevier).
[009] [GN1] R. Geoghegan and A. Nicas, Parametrized Lefschetz-Nielsen fixed point theory and Hochschild homology traces, Amer. J. Math. 116 (1994), 397-446. | Zbl 0812.55001
[010] [GN2] R. Geoghegan and A. Nicas, Trace and torsion in the theory of flows, Topology 33 (1994), 683-719. | Zbl 0821.55001
[011] [GN3] R. Geoghegan and A. Nicas, Higher Euler characteristics (I), Enseign. Math. 41 (1995), 3-62. | Zbl 0842.55002
[012] [GN4] R. Geoghegan and A. Nicas, A Hochschild homology Euler characteristic for circle actions, K-theory (to appear). | Zbl 0947.55004
[013] [GNO] R. Geoghegan, A. Nicas and J. Oprea, Higher Lefschetz traces and spherical Euler characteristics, Trans. Amer. Math. Soc. 348 (1996), 2039-2062. | Zbl 0859.55003
[014] [HH] H. M. Hastings and A. Heller, Homotopy idempotents on finite dimensional complexes split, Proc. Amer. Math. Soc. 85 (1982), 619-622. | Zbl 0513.55011
[015] [J] B. J. Jiang, Estimation of the number of periodic orbits, Pacific J. Math. 172 (1996), 151-185. | Zbl 0855.55001
[016] [K] M. A. Kervaire, Le théorème de Barden-Mazur-Stallings, Comment. Math. Helv. 40 (1965), 31-42.
[017] [M] J. Milnor, Infinite cyclic coverings, in: Conference on the Topology of Manifolds (Michigan State Univ., E. Lansing, Mich., 1967), Prindle, Weber & Schmidt, Boston, 1968, 115-133.
[018] [R] K. Reidemeister, Automorphismen von Homotopiekettenringen, Math. Ann. 112 (1936), 586-593.
[019] [RS] C. P. Rourke and B. J. Sanderson, Introduction to Piecewise-Linear Topology, Springer-Verlag, New York, 1972. | Zbl 0254.57010
[020] [St] J. Stallings, Centerless groups - An algebraic formulation of Gottlieb's theorem, Topology 4 (1965), 129-134. | Zbl 0201.36001
[021] [Wa] C. T. C. Wall, Finiteness conditions for CW complexes, Ann. of Math. 81 (1965), 56-69. | Zbl 0152.21902
[022] [W] F. Wecken, Fixpunktklassen, I, II, III, Math. Ann. 117 (1941), 659-671, 118 (1942), 216-234, 118 (1942), 544-577.