Generalized Lefschetz numbers of pushout maps defined on non-connected spaces
Ferrario, Davide
Banach Center Publications, Tome 50 (1999), p. 117-135 / Harvested from The Polish Digital Mathematics Library

Let A, X1 and X2 be topological spaces and let i1:AX1, i2:AX2 be continuous maps. For all self-maps fA:AA, f1:X1X1 and f2:X2X2 such that f1i1=i1fA and f2i2=i2fA there exists a pushout map f defined on the pushout space X1AX2. In [F] we proved a formula relating the generalized Lefschetz numbers of f, fA, f1 and f2. We had to assume all the spaces involved were connected because in the original definition of the generalized Lefschetz number given by Husseini in [H] the space was assumed to be connected. So, to extend the result of [F] to the not necessarily connected case, a definition of generalized Lefschetz number for a map defined on a not necessarily connected space is given; it reduces to the original one when the space is connected and it is still a trace-like quantity. It allows us to prove the pushout formula in this more general case and therefore to get a tool for computing Nielsen and generalized Lefschetz numbers in a wide class of spaces.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:208954
@article{bwmeta1.element.bwnjournal-article-bcpv49i1p117bwm,
     author = {Ferrario, Davide},
     title = {Generalized Lefschetz numbers of pushout maps defined on non-connected spaces},
     journal = {Banach Center Publications},
     volume = {50},
     year = {1999},
     pages = {117-135},
     zbl = {0939.55001},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv49i1p117bwm}
}
Ferrario, Davide. Generalized Lefschetz numbers of pushout maps defined on non-connected spaces. Banach Center Publications, Tome 50 (1999) pp. 117-135. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv49i1p117bwm/

[000] [B] R. F. Brown, The Lefschetz Fixed Point Theorem, Scott Foresman and Company, Chicago, 1971. | Zbl 0216.19601

[001] [FH] E. Fadell and S. Husseini, The Nielsen Number on Surfaces, Contemp. Math. 21, AMS, Providence, 1983. | Zbl 0563.55001

[002] [F] D. Ferrario, Generalized Lefschetz numbers of pushout maps, Topology Appl. 68 (1996) 67-81. | Zbl 0845.55003

[003] [H] S. Y. Husseini, Generalized Lefschetz Numbers, Trans. Amer. Math. Soc. 272 (1982), 247-274. | Zbl 0507.55001

[004] [J] B. J. Jiang, Lectures on Nielsen fixed point theory, Contemp. Math. 14, Amer. Math. Soc., Providence, 1983. | Zbl 0512.55003

[005] [J1] B. J. Jiang, Periodic orbits on surfaces via Nielsen fixed point theory, in: Topology Hawaii (Honolulu, HI, 1990), 101-118.

[006] [P] R. A. Piccinini, Lectures on Homotopy Theory, North-Holland, Amsterdam, 1992. | Zbl 0742.55001

[007] [S] J. Stallings, Centerless groups - an algebraic formulation of Gottlieb's theorem, Topology 4 (1965), 129-134. | Zbl 0201.36001