What is a disk?
Hag, Kari
Banach Center Publications, Tome 50 (1999), p. 43-53 / Harvested from The Polish Digital Mathematics Library

This paper should be considered as a companion report to F.W. Gehring’s survey lectures “Characterizations of quasidisks” given at this Summer School [7]. Notation, definitions and background results are given in that paper. In particular, D is a simply connected proper subdomain of R2 unless otherwise stated and D* denotes the exterior of D in R¯2. Many of the characterizations of quasidisks have been motivated by looking at properties of euclidean disks. It is therefore natural to go back and ask if any of the original properties in fact characterize euclidean disks. We follow the procedure in Gehring’s lectures and look at four different categories of properties: 1. Geometric properties, 2. Conformal invariants, 3. Injectivity criteria, 4. Extension properties. As we shall see, the answers are not equally easy to obtain and not always positive. There are, in fact, still many interesting open questions.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:208951
@article{bwmeta1.element.bwnjournal-article-bcpv48i1p43bwm,
     author = {Hag, Kari},
     title = {What is a disk?},
     journal = {Banach Center Publications},
     volume = {50},
     year = {1999},
     pages = {43-53},
     zbl = {0938.46022},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv48i1p43bwm}
}
Hag, Kari. What is a disk?. Banach Center Publications, Tome 50 (1999) pp. 43-53. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv48i1p43bwm/

[000] [1] L. V. Ahlfors, Complex analysis, McGraw-Hill 1979. | Zbl 0395.30001

[001] [2] L. V. Ahlfors, Conformal invariants, McGraw-Hill 1973.

[002] [3] L. V. Ahlfors, Quasiconformal reflections, Acta Math. 109 (1963), 291-301.

[003] [4] K. Astala and F. W. Gehring, Injectivity, the BMO norm and the universal Teichmüller space, J. d'Analyse Math. 46 (1986), 16-57. | Zbl 0628.30026

[004] [5] J. Becker and Ch. Pommerenke, Schlichtheitskriterien und Jordangebiete, J. reine angew. Math. 354 (1984), 74-94,

[005] [6] M. Berger, Geometry I and II, Springer-Verlag 1980.

[006] [7] F. W. Gehring, Characterizations of quasidisks, this volume. | Zbl 0934.30016

[007] [8] F. W. Gehring, Univalent functions and the Schwarzian derivative, Comm. Math. Helv. 52 (1977), 561-572. | Zbl 0373.30013

[008] [9] F. W. Gehring, Injectivity of local quasi-isometries, Comm. Math. Helv. 57 (1982), 202-220. | Zbl 0528.30010

[009] [10] F. W. Gehring and K. Hag, Hyperbolic geometry and disks, in: Proceedings of the Conference on Continued Fractions and Geometric Function Theory - Trondheim (to appear). | Zbl 0943.30028

[010] [11] F. W. Gehring and B. G. Osgood, Uniform domains and the quasihyperbolic metric, J. d'Analyse Math. 36 (1979), 50-74. | Zbl 0449.30012

[011] [12] V. M. Gol’dstein and S. K. Vodop’janov, Prolongement des fonctions de classe L1p et applications quasi conformes, C. R. Acad. Sc. Paris 290 (1980), 453-456.

[012] [13] F. John, On quasi-isometric mappings II, Comm. Pure Appl. Math. 22 (1969), 265-278. | Zbl 0167.42503

[013] [14] P. W. Jones, Quasiconformal mappings and extendability of functions in Sobolev spaces, Acta Math. 147 (1981), 71-88. | Zbl 0489.30017

[014] [15] N. Langmeyer, The quasihyperbolic metric, growth, and John domains, Univ. Michigan Thesis 1996. | Zbl 0904.30014

[015] [16] M. Lehtinen, On the inner radius of univalency for non-circular domains, Ann. Acad. Sci Fenn. 5 (1980), 45-47. | Zbl 0402.30019

[016] [17] O. Lehto and K. I. Virtanen, Quasiconformal mappings in the plane, Springer-Verlag 1973. | Zbl 0267.30016

[017] [18] O. Martio and J. Sarvas, Injectivity theorems in plane and space, Ann. Acad. Sci. Fenn. 4 (1978-79), 383-401. | Zbl 0406.30013

[018] [19] Z. Nehari, The Schwarzian derivative and schlicht functions, Bull. Amer. Math. Soc. 55 (1949), 545-551. | Zbl 0035.05104

[019] [20] M. H. A. Newman, The topology of plane point sets, Cambridge University Press 1954.

[020] [21] Ch. Pommerenke, Boundary behaviour of conformal maps, Springer-Verlag 1992.

[021] [22] S. Rickman, Extensions over quasiconformally equivalent curves, Ann Acad. Sci. Fenn. 10 (1985), 511-514.

[022] [23] D. Stowe, Injectivity and the pre-Schwarzian derivative, Mich. Math. J. 45 (1998), 537-546. | Zbl 0958.30007

[023] [24] M. Walker, Linearly locally connected sets and quasiconformal mappings, Ann. Acad. Sci. Fenn. 11 (1986), 77-86. | Zbl 0533.30018

[024] [25] S. Yang, QED domains and NED sets in R¯n, Trans. Amer. Math. Soc. 334 (1992), 97-120. | Zbl 0768.30015