Contents Introduction 119 1. Quasiregular mappings 120 2. The Beltrami equation 121 3. The Beltrami-Dirac equation 122 4. A quest for compactness 124 5. Sharp -estimates versus variational integrals 125 6. Very weak solutions 128 7. Nonlinear commutators 129 8. Jacobians and wedge products 131 9. Degree formulas 134 References 136
@article{bwmeta1.element.bwnjournal-article-bcpv48i1p119bwm, author = {Iwaniec, Tadeusz}, title = {Nonlinear analysis and quasiconformal mappings from the perspective of PDEs}, journal = {Banach Center Publications}, volume = {50}, year = {1999}, pages = {119-140}, zbl = {0942.46016}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv48i1p119bwm} }
Iwaniec, Tadeusz. Nonlinear analysis and quasiconformal mappings from the perspective of PDEs. Banach Center Publications, Tome 50 (1999) pp. 119-140. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv48i1p119bwm/
[000] [A] S. S. Antman, Fundamental Mathematical Problems in the Theory of Nonlinear Elasticity, North-Holland, (1976), 33-54.
[001] [AD] J.J. Alibert and B. Dacorogna, An example of a quasiconvex function that is not polyconvex in two dimensions, Arch. Rat. Mech. Anal. 117 (1992), 155-166. | Zbl 0761.26009
[002] [As] K. Astala, Area distortion of quasiconformal mappings, Acta Math. 173 (1994), 37-60. | Zbl 0815.30015
[003] [B] J. M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rat. Mech. Anal. 63 (1977), 337-403. | Zbl 0368.73040
[004] [Ba] Z. M. Balogh, Jacobians in Sobolev spaces, preprint.
[005] [Bo] B. Bojarski, Generalized solutions of a system of differential equations of first order and elliptic type with discontinuous coeffieients, Mat. Sbornik 43 (1957), 451-503.
[006] [Be] F. Bethuel, The approximation problem for Sobolev maps between two manifolds, Acta Math. 167 (1991), 153-206. | Zbl 0756.46017
[007] [BG] L. Boccardo and T. Gallouet, Non linear elliptic and parabolic equations involving measure data, Jour. Func. Anal. 87 (1989), 149-169. | Zbl 0707.35060
[008] [BBH] F. Bethuel, H. Brezis and F. Helein, Ginzburg-Landau Vortices, Birkhäuser, 19.
[009] [BK] D. Burago and B. Kleiner, Separated nets in Euclidean space and Jacobians of bi-Lipschitz maps, Geom. Funct. Anal. 8 (1998), 273-282. | Zbl 0902.26004
[010] [BL] R. Bañuelos and A. Lindeman, A martingale study of the Beurling-Ahlfors transform in , Journal of Funct. Anal. 145 (1997), 224-265. | Zbl 0876.60026
[011] [BI] B. Bojarski and T. Iwaniec, Analytical foundations of the theory of quasiconformal mappings in , Ann. Acad. Sci. Fenn. Ser. A I Math. 8 (1983), 257-324. | Zbl 0548.30016
[012] [BM-S] A. Baernstein and S. J. Montgomery-Smith, Some conjectures about integral means of ∂f and , preprint. | Zbl 0966.30001
[013] [BN1] H. Brezis and L. Nirenberg, Degree theory and BMO. Part I: Compact manifolds without boundaries, Selecta Math. 1 (1995), 197-263. | Zbl 0852.58010
[014] [BN2] H. Brezis and L. Nirenberg, Degree theory and BMO. Part II: Manifolds with boundaries, Selecta Math. 2 (1996), 309-368. | Zbl 0868.58017
[015] [BIS] L. Budney, T. Iwaniec and B. Stroffolini, Removability of singularities of A-harmonic functions, Differential and Integral Equations 12 (1999), 261-274. | Zbl 1064.35505
[016] [Bu] D. Burkholder, Sharp inequalities for martingales and stochastic integrals, Astérisque 157-158, (1988), 75-94.
[017] [BW] R. Bañuelos and G. Wang, Sharp inequalities for martingales with applications to the Beurling-Ahlfors and Riesz transforms, Duke Math. J. 80 (1995), 575-600. | Zbl 0853.60040
[018] [CG] R. Coifman and L. Grafakos, Hardy space estimates for multilinear operators I, Revista Matematica Iberoamericana 8 (1992), 45-67. | Zbl 0785.47025
[019] [CJMR] M. Cwikel, B. Jawerth, M. Milman and R. Rochberg, Differential estimates and commutators in interpolation theory, London Math. Soc. Lecture Notes 138 (1989), 170-220. | Zbl 0696.46050
[020] [CLMS] R. R. Coifman, P. L. Lions, Y. Meyer and S. Semmes, Compensated compactness and Hardy spaces, J. Math. Pures Appl. (9) 72 (1993), 247-286. | Zbl 0864.42009
[021] [Da] B. Dacorogna, Direct Methods in the Calculus of Variations, Springer-Verlag, Berlin 1989. | Zbl 0703.49001
[022] [D] G. David, Solutions de l’équation de Beltrami avec , Ann. Acad. Sci. Fenn. Ser. A I Math. 13 (1988), 25-70.
[023] [DM] B. Dacorogna and J. Moser, On a partial differential equation involving the Jacobian determinant, Ann. I.H.P. Analyse Non Linéaire 7 (1990), 1-26. | Zbl 0707.35041
[024] [DHM 1] G. Dolzmann, N. Hungerbühler and S. Müller, Non-linear elliptic systems with measure-valued right hand side, Math. Z. 226 (1997), 545-574. | Zbl 0895.35029
[025] [DHM 2] G. Dolzmann, N. Hungerbühler and S. Müller, The p-harmonic system with measure-valued right hand side, Ann. Inst. H. Poincaré Anal. Non Linéaire 14 (1997), 353-364. | Zbl 0879.35052
[026] [DS] S. K. Donaldson and D. B. Sullivan, Quasiconformal 4-manifolds, Acta Math. 163 (1989), 181-252.
[027] [EH] A. Eremenko and D. Hamilton, On the area distortion by quasiconformal mappings, Proc. Amer. Math. Soc. 123 (1995), 2793-2797. | Zbl 0841.30013
[028] [EM] L. C. Evans and S. Müller, Hardy spaces and the two-dimensional Euler equations with nonegative vorticity, J. Amer. Math. Soc. 7 (1994), 199-219. | Zbl 0802.35120
[029] [EsM] M. J. Esteban and S. Müller, Sobolev maps with integer degree and applications to Skyrme's problem, Proc. Roy. Soc. London 436 A (1992), 197-201. | Zbl 0757.49010
[030] [G] L. Greco, A remark on the equality det Df=Det Df, Diff. Int. Eq. 6 (1993), 1089-1100. | Zbl 0784.49013
[031] [Ge] F. W. Gehring, The -integrability of the partial derivatives of a quasiconformal mapping, Acta Math. 130 (1973), 265-277. | Zbl 0258.30021
[032] [GI] F. W. Gehring and T. Iwaniec, The limit of mappings with finite distortion, Ann. Acad. Sci. Fenn. 24 (1999), to appear. | Zbl 0929.30016
[033] [GIM] L. Greco, T. Iwaniec and G. Moscariello, Limits of the improved integrability of the volume forms, Indiana University Math. J. 44 (1995), 305-339. | Zbl 0855.42009
[034] [GIS] L. Greco, T. Iwaniec and C. Sbordone, Inverting the p-harmonic operator, Manuscripta Mathematica 92 (1997), 249-258. | Zbl 0869.35037
[035] [GISS] L. Greco, T. Iwaniec, C. Sbordone and B. Stroffolini, Degree formulas for maps with nonintegrable Jacobian, Topological Methods in Nonlinear Analysis 6 (1995), 81-95. | Zbl 0854.58005
[036] [GMS] J. M. Giaquinta, G. Modica and J. Souček, Remarks on the degree theory, J. Funct. Anal. 125 (1994), 172-200. | Zbl 0822.55003
[037] [HKM] J. Heinonen, T. Kilpeläinen and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford University Press, Oxford 1993. | Zbl 0780.31001
[038] [HK] J. Heinonen and P. Koskela, Sobolev mappings with integrable dilatation, Arch. Rat. Mech. Anal. 125 (1993), 81-97. | Zbl 0792.30016
[039] [H] A. Hinkkanen, Uniformly quasiregular semigroups in two dimensions, Ann. Acad. Sci. Fenn. Math. 21 (1996), 205-222. | Zbl 0856.30017
[040] [I 1] T. Iwaniec, p-harmonic tensors and quasiregular mappings, Ann. of Math. 136, (1992) 589-624. | Zbl 0785.30009
[041] [I 2] T. Iwaniec, Integrability theory of the Jacobians, Lipschitz Lectures, preprint No. 36, Sonderforschungsbereich 256, Bonn 1995, pp. 1-68.
[042] [I 3] T. Iwaniec, Current advances in quasiconformal geometry and nonlinear analysis, Proceedings of the XVIth Rolf Nevanlinna Colloquium, Eds.: Laine/Martio, Walter de Gruyter & Co. (1996), pp. 59-80. | Zbl 0876.30025
[043] [I 4] T. Iwaniec, The failure of lower semicontinuity for the linear dilatation, Bull. London Mathematical Society 30 (1998), 55-61. | Zbl 0924.30031
[044] [I 5] T. Iwaniec, Nonlinear commutators and Jacobians, Lectures in El Escorial (Spain, 1996), special issue of the Journal of Fourier Analysis and Applications dedicated to Miguel de Guzman, Vol. 3 (1997), 775-796.
[045] [I 6] T. Iwaniec, Nonlinear Cauchy-Riemann operators in , Proc. AMS, to appear.
[046] [IL 1] T. Iwaniec and A. Lutoborski, Integral estimates for null Lagrangians, Arch. Rat. Mech. Anal. 125 (1993), 25-79. | Zbl 0793.58002
[047] [IL 2] T. Iwaniec and A. Lutoborski, Polyconvex functionals for nearly conformal deformations, SIAM J. Math. Anal., Vol. 27, No. 3 (1996), pp. 609-619. | Zbl 0847.30014
[048] [IM 1] T. Iwaniec and G. Martin, Quasiconformal mappings in even dimensions, Acta Math. 170 (1993), 29-81. | Zbl 0785.30008
[049] [IM 2] T. Iwaniec and G. Martin, Riesz transforms and related singular integrals, J. reine angew. Math. 473 (1996), 25-57. | Zbl 0847.42015
[050] [IMNS] T. Iwaniec, L. Migliaccio, L. Nania and C. Sbordone, Integrability and removability results for quasiregular mappings in high dimensions, Math. Scand. 75 (1994), 263-279. | Zbl 0824.30009
[051] [IMS] T. Iwaniec, M. Mitrea and C. Scott, Boundary value estimates for harmonic forms, Proc. Amer. Math. Soc. 124 (1996), pp. 1467-1471. | Zbl 0854.31002
[052] [ISS] T. Iwaniec, C. Scott and B. Stroffolini, Nonlinear Hodge theory on manifolds with boundary, Annali di Matematica pura ed Applicata, to appear. | Zbl 0963.58003
[053] [IŠ] T. Iwaniec and V. Šverak, On mappings with integrable dilatation, Proc. Amer. Math. Soc. 118 (1993), 181-188. | Zbl 0784.30015
[054] [IS 1] T. Iwaniec and C. Sbordone, On the integrability of the Jacobian under minimal hypotheses, Arch. Rat. Mech. Anal. 119 (1992), 129-143. | Zbl 0766.46016
[055] [IS 2] T. Iwaniec and C. Sbordone, Weak minima of variational integrals, J. Reine Angew. Math. 454 (1994), 143-161.
[056] [IS 3] T. Iwaniec and C. Sbordone, Riesz transforms and elliptic PDEs with VMO-coefficients, Journal d'Analyse Mathématique 74 (1998), 183-212. | Zbl 0909.35039
[057] [IV 1] T. Iwaniec and A. Verde, A study of Jacobians in Hardy-Orlicz spaces, Proc. Royal Soc. Edinburgh (1999).
[058] [IV 2] T. Iwaniec and A. Verde, Note on the operator 𝓛(f)=f log|f|, submitted to the Journal of Functional Analysis.
[059] [Ka1] N. J. Kalton, Differential methods in interpolation theory, notes of the lectures at the University of Arkansas, April 10-13, 1996.
[060] [Ka2] N. J. Kalton, Nonlinear commutators in interpolation theory, Memoirs AMS 385, vol. 73, (1988), 1-85.
[061] [K] T. Kilpeläinen and J. Maly, Degenerate elliptic equations with measure data and nonlinear potentials, Ann. Scuola Norm. Sup. Pisa 19 (1992), 591-613. | Zbl 0797.35052
[062] [L] J. Lewis, On very weak solutions of certain elliptic systems, Comm. Partial Differential Equations 18 (1993), 1515-1537. | Zbl 0796.35061
[063] [Li] A. Lindeman, Martingales and the n-dimensional Beurling-Ahlfors transform, preprint (1996).
[064] [LM] H. B. Lawson and M. L. Michelson, Spin Geometry, Princeton Univ. Press, Princeton, 1989.
[065] [McM] C. T. McMullen, Lipschitz maps and nets in Euclidean space, Geom. Funct. Anal. 8 (1998), 304-314. | Zbl 0941.37030
[066] [Mi] M. Milman, Higher order commutator in the real method of interpolation, Journal D'Analyse Math. 66 (1995), 37-56.
[067] [M] J. Moser, On the volume elements on a manifold, Trans. Amer. Math. Soc. 120 (1965), 286-294. | Zbl 0141.19407
[068] [MR] M. Milman and R. Rochberg, The role of cancellation in interpolation theory, Contemporary Math. 189 (1995), 403-410. | Zbl 0902.46048
[069] [MS] M. Milman and T. Schonbek, A note on second order estimates in interpolation theory and applications, Proc. AMS 110 (1990), 961-969. | Zbl 0717.46066
[070] [Mu1] F. Murat, Compacité par compensations, Ann. Sc. Norm. Sup. Pisa 5 (1978), 489-507. | Zbl 0399.46022
[071] [Mu2] F. Murat, Soluciones renormalizades de EDP elipticas no linear, Publications du Laboratoire d'Analyse Numerique, Paris (1993).
[072] [Ma] J. Manfredi, Quasiregular mappings from the multilinear point of view, Ber. University, Jyväskylä Math. Inst. 68 (1995), 55-94. | Zbl 0843.30020
[073] [MV] J. Manfredi and E. Villamor, Mappings with integrable dilatation in higher dimensions, Bull. Amer. Math. Soc. 32 (1995), 235-240. | Zbl 0857.30020
[074] [Mü] S. Müller, A surprising higher integrability property of mappings with positive determinant, Bull. Amer. Math. Soc. 21 (1989), 245-248. | Zbl 0689.49006
[075] [R] H. M. Reimann, Harmonische Funktionen und Jacobi-Determinanten von Diffeomorphismen, Comment. Math. Helv. 47 (1972), 397-408.
[076] [RRT] J. W. Robbin, R. C. Roger and B. Temple, On weak continuity and the Hodge decomposition, Trans. AMS 303 (1987), 609-618. | Zbl 0634.35005
[077] [RY] T. Rivere and D. Ye, Resolutions of the prescribed volume form equation, Nonlinear Differential Equations Appl. 3 (1996), 323-369..
[078] [Ri] S. Rickman, Quasiregular Mappings, Springer-Verlag, Berlin 1993.
[079] [Re 1] Y. G. Reshetnyak, On extremal properties of mappings with bounded distortion, Sibirsk. Mat. Z. 10 (1969), 1300-1310 (Russian).
[080] [Re 2] Y.G. Reshetnyak, Space Mappings with Bounded Distortion, Trans. Math. Monographs 73, Amer. Math. Soc., 1989.
[081] [Ro] R. Rochberg, Higher order estimates in complex interpolation theory, Pacific J. Math. 174 (1996), 247-267. | Zbl 0866.46047
[082] [RW] R. Rochberg and G. Weiss, Derivatives of analytic families of Banach spaces, Ann. of Math. 118 (1983), 315-347. | Zbl 0539.46049
[083] [S] E. M. Stein, Note on the class LlogL, Studia Math. 32 (1969), 305-310. | Zbl 0182.47803
[084] [Sc] C. Scott, -theory of differential forms on manifolds, Trans. Amer. Math. Soc. 347 (1995), 2075-2096. | Zbl 0849.58002
[085] [Se] S. Semmes, A primer on Hardy spaces, and some remarks on a theorem of Evans and Müller, Commun. in PDEs 19 (1994), 277-319. | Zbl 0836.35030
[086] [Š] V. Šverak, Rank-one convexity does not imply quasiconvexity, Proc. Royal Soc. Edinburgh 120A (1992), 185-189. | Zbl 0777.49015
[087] [Ta] L. Tartar, Compensated compactness and applications to partial differential equations in Nonlinear Analysis and Mechanics, Heriotwatt Symposium IV, Research Notes in Mathematics, R. J. Knops (ed.), vol. 39, Pitman, London, (1979), 136-212.
[088] [T 1] P. Tukia, On quasiconformal groups, J. Analyse Math. 46 (1986), 318-346. | Zbl 0603.30026
[089] [T 2] P. Tukia, Compactness properties of μ-homeomorphisms, Ann. Acad. Sci. Fenn. Ser. A I Math. 16 (1991) 47-69.
[090] [V 1] J. Väisälä, Lectures on n-Dimensional Quasiconformal Mappings, Lecture Notes in Mathematics, 229, Springer-Verlag, 1971. | Zbl 0221.30031
[091] [V 2] J. Väisälä, Questions on quasiconformal maps in space, in: Quasiconformal Mappings and Analysis, Springer, New York, 1998, 369-374. | Zbl 0892.30020
[092] [VG] S. K. Vodop'yanov and V. M. Goldstein, Quasiconformal mappings and spaces of functions with generalized first derivatives, Sibirsk. Mat. Z. 17 (1976), 515-531 (Russian).
[093] [Vu] M. Vuorinen (ed.), Quasiconformal Space Mappings, A collection of Surveys 1960-1990 (Lecture Notes in Math. 1508), Springer-Verlag, Berlin 1992.
[094] [W] W. Wente, An existence theorem for surfaces of constant mean curvature, J. Math. Anal. Appl. 26 (1969), 318-344. | Zbl 0181.11501
[095] [Ye] D. Ye, Prescribing the Jacobian determinant in Sobolev spaces, Ann. Inst. H. Poincaré Anal. Non Linéaire 11 (1994), 275-296. | Zbl 0834.35047