A brief introduction to the Conley index theory is presented. The emphasis is the fundamental ideas of Conley's approach to dynamical systems and how it avoids some of the difficulties inherent in the study of nonlinear systems.
@article{bwmeta1.element.bwnjournal-article-bcpv47i1p9bwm, author = {Mischaikow, Konstantin}, title = {The Conley index theory: A brief introduction}, journal = {Banach Center Publications}, volume = {50}, year = {1999}, pages = {9-19}, zbl = {0946.37010}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv47i1p9bwm} }
Mischaikow, Konstantin. The Conley index theory: A brief introduction. Banach Center Publications, Tome 50 (1999) pp. 9-19. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv47i1p9bwm/
[000] [1] M. Carbinatto, J. Kwapisz, and K. Mischaikow, Horseshoes and the Conley Index Spectrum, http://www.math.gatech.edu/ mischaik. | Zbl 0971.37005
[001] [2] M. Carbinatto and K. Mischaikow, Horseshoes and the Conley Index Spectrum (II): The theorem is sharp, http://www.math.gatech.edu/ mischaik. | Zbl 0954.37009
[002] [3] L. Arnold, C. Jones, K. Mischaikow, and G. Raugel, Dynamical Systems: Montecatini Terme, 1994, R. Johnson, ed. Lect. Notes in Math. 1609, Springer 1995.
[003] [4] C. Conley, Isolated Invariant Sets and the Morse Index. CBMS Lecture Notes 38, A.M.S. Providence, R.I. 1978.
[004] [5] C. Conley, A qualitative singular perturbation theorem, in: Global Theory of Dynamical Systems, (eds. Z. Nitecki and C. Robinson), Lecture Notes in Math. 819, Springer, 1980, 65-89.
[005] [6] C. Conley and R. Easton, Isolated invariant sets and isolating blocks, Trans. AMS 158 (1971), 35-61. | Zbl 0223.58011
[006] [7] C. Conley and J. Smoller, Viscosity matrices for two dimensional nonlinear hyperbolic systems, Comm. Pure Appl. Math. 23 (1970), 867-884. | Zbl 0201.43301
[007] [8] C. Conley and J. Smoller, Viscosity matrices for two dimensional nonlinear hyperbolic systems, II, Amer. J. Math. 94 (1972), 631-650. | Zbl 0247.35081
[008] [9] C. Conley and J. Smoller, On the structure of magnetohydrodynamic shock waves, Comm. Pure Appl. Math. 27 (1974), 367-375. | Zbl 0284.76080
[009] [10] C. Conley and J. Smoller, On the structure of magnetohydrodynamic shock waves, II, J. Math. Pures et Appl. 54 (1975), 429-444. | Zbl 0292.76045
[010] [11] M. Degiovanni and M. Mrozek, The Conley index for maps in the absence of compactness, Proc. Roy. Soc. Edin. 123A (1993), 75-94. | Zbl 0789.58066
[011] [12] A. Floer, A refinement of the Conley index and an application to the stability of hyperbolic invariant sets, Erg. Thy. Dyn. Sys. 7 (1987), 93-103. | Zbl 0633.58040
[012] [13] A. Floer, Proof of the Arnold conjecture for surfaces and generalizations to certain Kähler manifolds, Duke Math. J. 53 (1986), 1-32. | Zbl 0607.58016
[013] [14] J. Franks and D. Richeson, Shift Equivalence and the Conley Index, preprint 1998.
[014] [15] R. Franzosa, Index filtrations and the homology index braid for partially ordered Morse decompositions, Trans. AMS 298 (1986), 193-213. | Zbl 0626.58013
[015] [16] R. Franzosa, The connection matrix theory for Morse decompositions, Trans. AMS 311 (1989), 561-592. | Zbl 0689.58030
[016] [17] R. Franzosa, The continuation theory for Morse decompositions and connection matrices, Trans. AMS 310, (1988), 781-803. | Zbl 0708.58021
[017] [18] R. Franzosa and K. Mischaikow, The connection matrix theory for semiflows on (not necessarily locally compact) metric spaces, Journal of Differential Equations 71 (1988), 270-287. | Zbl 0676.54048
[018] [19] R. Franzosa and K. Mischaikow, Algebraic Transition Matrices in the Conley Index Theory, Trans. AMS 350 (1998), 889-912. | Zbl 0896.58053
[019] [20] T. Gedeon, H. Kokubu, K. Mischaikow, H. Oka, and J. Reineck, The Conley index for fast slow systems I: One dimensional slow variable, J. Dyn. Diff. Eq. (to appear). | Zbl 0945.34029
[020] [21] T. Kaczynski and M. Mrozek, Conley index for discrete multi-valued dynamical systems, Top. Appl. 65 (1995), 83-96. | Zbl 0843.54042
[021] [22] T. Kaczynski and M. Mrozek, Stable Index Pairs for Discrete Dynamical Systems, Bul. Can. Math. Soc. (to appear). | Zbl 0903.54018
[022] [23] C. McCord, Mappings and homological properties in the homology Conley index. Erg. Th. Dyn. Sys. 8* (1988), 175-198. | Zbl 0633.58019
[023] [24] C. McCord and K. Mischaikow, Connected simple systems, transition matrices, and heteroclinic bifurcations, Trans. AMS 333 (1992), 379-422. | Zbl 0763.34028
[024] [25] C. McCord and K. Mischaikow, On the global dynamics of attractors for scalar delay equations, Jour. AMS 9 (1996), 1095-1133. | Zbl 0861.58023
[025] [26] C. McCord, K. Mischaikow, and M. Mrozek. Zeta functions, periodic trajectories, and the Conley index, JDE 121 (1995), 258-292. | Zbl 0833.34045
[026] [27] K. Mischaikow, Global asymptotic dynamics of gradient-like bistable equations, SIAM Math. Anal. 26 (1995), 1199-1224. | Zbl 0841.35014
[027] [28] K. Mischaikow and Y. Morita, Dynamics on the Global Attractor of a Gradient Flow arising in the Ginzburg-Landau Equation, Jap. J. Ind. Appl. Math. 11 (1994), 185-202. | Zbl 0807.58029
[028] [29] K. Mischaikow and M. Mrozek, Isolating Neighborhoods and Chaos, Jap. J. Ind. Appl. Math. 12 (1995), 205-236. | Zbl 0840.58033
[029] [30] K. Mischaikow and M. Mrozek, Chaos in the Lorenz Equations: a Computer Assisted Proof, Bull. AMS 32 (1995), 66-72. | Zbl 0820.58042
[030] [31] K. Mischaikow and M. Mrozek, Chaos in the Lorenz Equations: a Computer Assisted Proof. Part II, Details, Math. Comp. 67 (1998), 1023-1046. | Zbl 0913.58038
[031] [32] K. Mischaikow, M. Mrozek, and J. Reineck, Singular Index Pairs, J. Dyn. Diff. Eq. (to appear). | Zbl 0943.34028
[032] [33] K. Mischaikow, M. Mrozek, J. Reiss, and A. Szymczak, Construction of Symbolic Dynamics from Experimental Time Series, http://www.math.gatech.edu/ mischaik.
[033] [34] K. Mischaikow, M. Mrozek, A. Szymczak, and J. Reiss, From Time Series to Symbolic Dynamics: An Algebraic Topological Approach, http://www.math.gatech.edu/ mischaik.
[034] [35] M. Mrozek, Leray functor and cohomological index for discrete dynamical systems, Trans. A. M. S. 318 (1990), 149-178. | Zbl 0686.58034
[035] [36] M. Mrozek, Topological invariants, multivalued maps, and computer assisted proofs, Comp. Math. 32 (1996), 83-104. | Zbl 0861.58027
[036] [37] M. Mrozek and K. P. Rybakowski, A cohomological Conley index for discrete dynamical systems, J. D. E. 90 (1991), 143-171. | Zbl 0721.58040
[037] [38] J. Reineck, Connecting orbits in one-parameter families of flows, Ergodic Theory and Dynamical Systems 8* (1988), 359-374. | Zbl 0675.58034
[038] [39] D. Richeson, Connection Matrix Pairs for the Discrete Conley Index, preprint 1997.
[039] [40] J. W. Robbin and D. Salamon, Dynamical systems, shape theory and the Conley index, Ergodic Theory and Dynamical Systems 8* (1988), 375-393. | Zbl 0682.58040
[040] [41] J. W. Robbin and D. Salamon, Lyapunov maps, simplicial complexes and the Stone functor, Ergod. Th. Dyn. Sys. 12 (1992), 153-183. | Zbl 0737.58033
[041] [42] K. P. Rybakowski, The Homotopy Index and Partial Differential Equations, Universitext, Springer-Verlag 1987. | Zbl 0628.58006
[042] [43] D. Salamon, Connected simple systems and the Conley index of isolated invariant sets, Trans. A.M.S. 291 (1985), 1-41. | Zbl 0573.58020
[043] [44] A. Szymczak, The Conley Index for Discrete Semidynamical Systems, Top. App. 66 (1995), 215-240. | Zbl 0840.34043
[044] [45] A. Szymczak, The Conley Index and Symbolic Dynamics, Topology 35 (1996), 287-299. | Zbl 0855.58023
[045] [46] A. Szymczak, A combinatorial procedure for finding isolating neighbourhoods and index pairs, Proc. Roy. Soc. Edin., to appear. | Zbl 0882.54032
[046] [47] T. Ważewski, Sur un principe topologique de l'examen de l'allure asymptotique des intégrales des équations différentielles ordinaires, Ann. Soc. Pol. Mat. 29 (1947), 279-313. | Zbl 0032.35001