The Conley index and countable decompositions of invariant sets
Gidea, Marian
Banach Center Publications, Tome 50 (1999), p. 91-108 / Harvested from The Polish Digital Mathematics Library

We define a new cohomological index of Conley type associated to any bi-infinite sequence of neighborhoods that satisfies a certain isolation condition. We use this index to study the chaotic dynamics on invariant sets which decompose as countable unions of pairwise disjoint (mod 0) compact pieces.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:208945
@article{bwmeta1.element.bwnjournal-article-bcpv47i1p91bwm,
     author = {Gidea, Marian},
     title = {The Conley index and countable decompositions of invariant sets},
     journal = {Banach Center Publications},
     volume = {50},
     year = {1999},
     pages = {91-108},
     zbl = {0946.37013},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv47i1p91bwm}
}
Gidea, Marian. The Conley index and countable decompositions of invariant sets. Banach Center Publications, Tome 50 (1999) pp. 91-108. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv47i1p91bwm/

[000] [1] L. A. Bunimovich, A Theorem on Ergodicity of Two-Dimensional Hyperbolic Billiards, Comm. Math. Phys. 130 (1990), 599-621. | Zbl 0704.58029

[001] [2] L. A. Bunimovich and Ya. G. Sinai, Markov Partitions for Dispersed Billiards, Comm. Math. Phys. 78 (1980), 247-280. | Zbl 0453.60098

[002] [3] M. Carbinatto, J. Kwapisz and K. Mischaikow, Horseshoes and the Conley Index Spectrum, preprint, CDSNS96-247. | Zbl 0971.37005

[003] [4] J. Degiovanni and M. Mrozek, The Conley Index for Maps in the Absence of Compactness, Proc. Royal Soc. Edinburgh 123A (1993), 79-95. | Zbl 0789.58066

[004] [5] M. Gidea, The Discrete Conley Index for Non-Invariant Sets, Proceedings of the Topological Methods in Differential Equations and Dynamical Systems Conference, Kraków, Poland, July (1996), to appear. | Zbl 1023.37501

[005] [6] M. Gidea, Leray Functor and Orbital Conley Index for Non-Invariant Sets, Discrete and Continuous Dynamical Systems, to appear.

[006] [7] M. Gidea, The Discrete Conley Index for Non-Invariant Sets and Detection of Chaos, thesis (1997).

[007] [8] A. Granas, The Leray-Schauder Index and the Fixed Point Index for Arbitrary ANR's, Bull. Soc. Math. France 100 (1972), 209-228. | Zbl 0236.55004

[008] [9] T. Kruger and S. Troubetzkoy, Markov Partitions and Shadowing for Non-Uniformly Hyperbolic Systems with Singularities, Erg. Th. Dyn. Sys. (1992), 487-508. | Zbl 0756.58038

[009] [10] K. Mischaikow, Conley Index Theory: Some recent development, preprint, CDSNS 94-181.

[010] [11] K. Mischaikow and M. Mrozek, Chaos in Lorentz equation: A computer assisted proof, Bull. Amer. Math. Soc. 32 (1995), 66-72. | Zbl 0820.58042

[011] [12] K. Mischaikow and M. Mrozek, Isolating Neighborhoods and Chaos, Japan J. Indus. Appl. Math. 12 (1995), 205-236. | Zbl 0840.58033

[012] [13] M. Mrozek, Leray functor and the cohomological Conley index for discrete dynamical systems, Trans. Amer. Math. Soc. 318 (1990), 149-178. | Zbl 0686.58034

[013] [14] M. Mrozek, Index pairs and the fixed point index for semidynamical systems with discrete time, Fundamenta Mathematicae 133 (1989), 179-194. | Zbl 0708.58024

[014] [15] R. Srzednicki, A generalization of Lefschetz fixed point theorem and detection of chaos, preprint. | Zbl 0942.55003

[015] [16] E. H. Spanier, Algebraic Topology, McGraw-Hill, 1966.

[016] [17] A. Szymczak, The Conley index for decompositions of isolated invariant sets, Fundamenta Mathematicae 148 (1995), 71-90. | Zbl 0855.54051

[017] [18] A. Szymczak, The Conley index for discrete semidynamical systems, Topology Appl., to appear. | Zbl 0840.34043