Connection matrix theory for discrete dynamical systems
Bartłomiejczyk, Piotr ; Dzedzej, Zdzisław
Banach Center Publications, Tome 50 (1999), p. 67-78 / Harvested from The Polish Digital Mathematics Library

In [C] and [F1] the connection matrix theory for Morse decomposition is developed in the case of continuous dynamical systems. Our purpose is to study the case of discrete time dynamical systems. The connection matrices are matrices between the homology indices of the sets in the Morse decomposition. They provide information about the structure of the Morse decomposition; in particular, they give an algebraic condition for the existence of connecting orbit set between different Morse sets.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:208943
@article{bwmeta1.element.bwnjournal-article-bcpv47i1p67bwm,
     author = {Bart\l omiejczyk, Piotr and Dzedzej, Zdzis\l aw},
     title = {Connection matrix theory for discrete dynamical systems},
     journal = {Banach Center Publications},
     volume = {50},
     year = {1999},
     pages = {67-78},
     zbl = {0946.37007},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv47i1p67bwm}
}
Bartłomiejczyk, Piotr; Dzedzej, Zdzisław. Connection matrix theory for discrete dynamical systems. Banach Center Publications, Tome 50 (1999) pp. 67-78. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv47i1p67bwm/

[000] [BD] P. Bartłomiejczyk and Z. Dzedzej, Index filtrations and Morse decompositions for discrete dynamical systems, submitted to Annales Polonici Math. | Zbl 0985.37011

[001] [C] C. Conley, Isolated invariant sets and the Morse index, CBMS Regional Conf. Ser. in Math. 38, AMS, Providence, R.I., 1980.

[002] [CoZ] C. Conley and R. Zehnder, Morse-type index theory for flows and periodic solutions for Hamoltonian systems, Comm. Pure Appl. Math. 37 (1984), 207-253. | Zbl 0559.58019

[003] [D] A. Dold, Lectures on algebraic topology, Springer Verlag, Berlin Heidelberg New York 1972. | Zbl 0234.55001

[004] [F1] R. Franzosa, Index filtrations and connection matrices for partially ordered Morse decompositions, Trans. Amer. Math. Soc. 298 (1986), 193-213. | Zbl 0626.58013

[005] [F2] R. Franzosa, The connection matrix theory for Morse decompositions, Trans. Amer. Math. Soc. 311 (1989), 561-592. | Zbl 0689.58030

[006] [M1] M. Mrozek, Index pairs and the fixed point index for semidynamical systems with discrete time, Fund. Math. 133 (1989), 179-194. | Zbl 0708.58024

[007] [M2] M. Mrozek, Leray functor and cohomological Conley index for discrete dynamical systems, Trans. Amer. Math. Soc. 318 (1990), 149-178. | Zbl 0686.58034

[008] [M3] M. Mrozek, Morse equation in Conley's index theory for homeomorphisms, Topology Appl. 38 (1991), 45-60. | Zbl 0725.58022

[009] [R] D. Richeson, Connection matrix pairs for the discrete Conley index, to appear in Trans. Amer. Math. Soc.

[010] [Sal] D. Salamon, Connected simple systems and the Conley index of isolated invariant sets, Trans. Amer. Math. Soc. 291 (1985), 1-41. | Zbl 0573.58020

[011] [Szy] A. Szymczak, The Conley index for discrete dynamical systems, Topology Appl. 66 (1995), 215-240. | Zbl 0840.34043