Connection matrices and transition matrices
McCord, Christopher ; Reineck, James
Banach Center Publications, Tome 50 (1999), p. 41-55 / Harvested from The Polish Digital Mathematics Library

This paper is an introduction to connection and transition matrices in the Conley index theory for flows. Basic definitions and simple examples are discussed.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:208941
@article{bwmeta1.element.bwnjournal-article-bcpv47i1p41bwm,
     author = {McCord, Christopher and Reineck, James},
     title = {Connection matrices and transition matrices},
     journal = {Banach Center Publications},
     volume = {50},
     year = {1999},
     pages = {41-55},
     zbl = {0946.37005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv47i1p41bwm}
}
McCord, Christopher; Reineck, James. Connection matrices and transition matrices. Banach Center Publications, Tome 50 (1999) pp. 41-55. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv47i1p41bwm/

[000] [1] L. Arnold, C. Jones, K. Mischaikow and G. Raugel, Dynamical Systems Montecatini Terme 1994, R. Johnson, ed., Lect. Notes Math. 1609, Springer, 1995.

[001] [2] C. Conley, Isolated Invariant Sets and the Morse Index, CBMS Reg. Conf. Ser. in Math., 38, AMS, Providence, 1978.

[002] [3] C. Conley, A qualitative singular perturbation theorem, Global Theory of Dynamical Systems, (eds. Z. Nitecki and C. Robinson), Lecture Notes in Math. 819, Springer-Verlag 1980, 65-89.

[003] [4] R. Franzosa, Index filtrations and the homology index braid for partially ordered Morse decompositions, Trans. AMS 298 (1986), 193-213. | Zbl 0626.58013

[004] [5] R. Franzosa, The connection matrix theory for Morse decompositions, Trans. AMS 311 (1989), 781-803. | Zbl 0708.58021

[005] [6] H. Kokubu, K. Mischaikow and H. Oka, Existence of infinitely many connecting orbits in a singularly perturbed ordinary differential equation, Nonlinearity 9 (1996), 1263-1280. | Zbl 0898.34047

[006] [7] C. McCord, The connection map for attractor-repeller pairs, Trans. AMS 308 (1988), 195-203. | Zbl 0646.34056

[007] [8] C. McCord and K. Mischaikow, Connected simple systems, transition matrices and heteroclinic bifurcations, Trans. AMS 333 (1992), 397-422. | Zbl 0763.34028

[008] [9] C. McCord and K. Mischaikow, Equivalence of topological and singular transition matrices in the Conley index, Mich. Math. J. 42 (1995), 387-414. | Zbl 0853.58080

[009] [10] J. Reineck, Connecting orbits in one-parameter families of flows, Erg. Thy. & Dyn. Sys. 8* (1988), 359-374. | Zbl 0675.58034

[010] [11] J. Reineck, The connection matrix in Morse-Smale flows, Trans. AMS 322 (1990), 523-545. | Zbl 0714.58027

[011] [12] J. Reineck, A connection matrix analysis of ecological models, Nonlin. Anal. 17 (1991), 361-384. | Zbl 0739.92022

[012] [13] Connection matrix pairs for the discrete Conley index, preprint. Available at http:/www.math.nwu.edu/~richeson.

[013] [14] D. Salamon, Connected Simple Systems and the Conley index of isolated invariant sets, Trans. AMS 291 (1985), 1-41. | Zbl 0573.58020

[014] [15] J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer-Verlag, 1980. | Zbl 0508.35002

[015] [16] E. Spanier, Algebraic Topology, McGraw Hill, 1966, Springer-Verlag, New York, 1982.