Some remarks on tubular neighborhoods and gluing in Morse-Floer homology
Rinaldi, Maurizio ; Rybakowski, Krzysztof
Banach Center Publications, Tome 50 (1999), p. 233-246 / Harvested from The Polish Digital Mathematics Library

We discuss the gluing principle in Morse-Floer homology and show that there is a gap in the traditional proof of the converse gluing theorem. We show how this gap can be closed by the use of a uniform tubular neighborhood theorem. The latter result is only stated here. Details are given in the authors' paper, Tubular neighborhoods and the Gluing Principle in Floer homology theory, to appear.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:208937
@article{bwmeta1.element.bwnjournal-article-bcpv47i1p233bwm,
     author = {Rinaldi, Maurizio and Rybakowski, Krzysztof},
     title = {Some remarks on tubular neighborhoods and gluing in Morse-Floer homology},
     journal = {Banach Center Publications},
     volume = {50},
     year = {1999},
     pages = {233-246},
     zbl = {0967.53054},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv47i1p233bwm}
}
Rinaldi, Maurizio; Rybakowski, Krzysztof. Some remarks on tubular neighborhoods and gluing in Morse-Floer homology. Banach Center Publications, Tome 50 (1999) pp. 233-246. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv47i1p233bwm/

[000] [1] S. Angenent and R. Vandervorst, preprint.

[001] [2] V. Benci, A new approach to the Morse-Conley theory and some applications, Ann. Mat. Pura Appl. (4) 158, 1991, 231-305. | Zbl 0778.58011

[002] [3] C. C. Conley, Isolated Invariant Sets and the Morse Index, CBMS 38, AMS, Providence, 1978.

[003] [4] K. Deimling, Nonlinear Functional Analysis, Springer Verlag, Berlin, Heidelberg, New York, 1985.

[004] [5] S. K. Donaldson and P. B. Kronheimer, The Geometry of Four-Manifolds, Oxford University Press, 1990. | Zbl 0820.57002

[005] [6] A. Floer, Morse theory for Lagrangian intersections, J. Diff. Geometry 28, 1988, 513-547. | Zbl 0674.57027

[006] [7] A. Floer, An instanton-invariant for 3-manifolds, Commun. Math. Physics 118, 1988, 215-240. | Zbl 0684.53027

[007] [8] A. Floer, Symplectic fixed points and holomorphic spheres, Commun. Math. Physics 120, 1989, 575-611. | Zbl 0755.58022

[008] [9] M. Rinaldi and K. P. Rybakowski, Tubular neighborhoods and the gluing principle in Floer homology theory, to appear. | Zbl 0967.53054

[009] [10] K. P. Rybakowski, On the homotopy index for infinite-dimensional semiflows, Trans. Amer. Math. Soc. 269, 1982, 351-382. | Zbl 0468.58016

[010] [11] K. P. Rybakowski, The Morse index, repeller-attractor pairs and the connection index for semiflows on noncompact spaces, J. Diff. Equations 47, 1983, 66-98. | Zbl 0468.58015

[011] [12] K. P. Rybakowski, The Homotopy Index and Partial Differential Equations, Springer Verlag, Berlin, Heidelberg, New York, 1987. | Zbl 0628.58006

[012] [13] K. P. Rybakowski and E. Zehnder, On a Morse equation in Conley's index theory for semiflows in metric spaces, Ergodic Theory Dyn. Systems 5, 1985, 123-143. | Zbl 0581.54026

[013] [14] M. Schwarz, Morse Homology, Birkhäuser Verlag, Basel, Boston, Berlin, 1993.