We discuss the gluing principle in Morse-Floer homology and show that there is a gap in the traditional proof of the converse gluing theorem. We show how this gap can be closed by the use of a uniform tubular neighborhood theorem. The latter result is only stated here. Details are given in the authors' paper, Tubular neighborhoods and the Gluing Principle in Floer homology theory, to appear.
@article{bwmeta1.element.bwnjournal-article-bcpv47i1p233bwm, author = {Rinaldi, Maurizio and Rybakowski, Krzysztof}, title = {Some remarks on tubular neighborhoods and gluing in Morse-Floer homology}, journal = {Banach Center Publications}, volume = {50}, year = {1999}, pages = {233-246}, zbl = {0967.53054}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv47i1p233bwm} }
Rinaldi, Maurizio; Rybakowski, Krzysztof. Some remarks on tubular neighborhoods and gluing in Morse-Floer homology. Banach Center Publications, Tome 50 (1999) pp. 233-246. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv47i1p233bwm/
[000] [1] S. Angenent and R. Vandervorst, preprint.
[001] [2] V. Benci, A new approach to the Morse-Conley theory and some applications, Ann. Mat. Pura Appl. (4) 158, 1991, 231-305. | Zbl 0778.58011
[002] [3] C. C. Conley, Isolated Invariant Sets and the Morse Index, CBMS 38, AMS, Providence, 1978.
[003] [4] K. Deimling, Nonlinear Functional Analysis, Springer Verlag, Berlin, Heidelberg, New York, 1985.
[004] [5] S. K. Donaldson and P. B. Kronheimer, The Geometry of Four-Manifolds, Oxford University Press, 1990. | Zbl 0820.57002
[005] [6] A. Floer, Morse theory for Lagrangian intersections, J. Diff. Geometry 28, 1988, 513-547. | Zbl 0674.57027
[006] [7] A. Floer, An instanton-invariant for 3-manifolds, Commun. Math. Physics 118, 1988, 215-240. | Zbl 0684.53027
[007] [8] A. Floer, Symplectic fixed points and holomorphic spheres, Commun. Math. Physics 120, 1989, 575-611. | Zbl 0755.58022
[008] [9] M. Rinaldi and K. P. Rybakowski, Tubular neighborhoods and the gluing principle in Floer homology theory, to appear. | Zbl 0967.53054
[009] [10] K. P. Rybakowski, On the homotopy index for infinite-dimensional semiflows, Trans. Amer. Math. Soc. 269, 1982, 351-382. | Zbl 0468.58016
[010] [11] K. P. Rybakowski, The Morse index, repeller-attractor pairs and the connection index for semiflows on noncompact spaces, J. Diff. Equations 47, 1983, 66-98. | Zbl 0468.58015
[011] [12] K. P. Rybakowski, The Homotopy Index and Partial Differential Equations, Springer Verlag, Berlin, Heidelberg, New York, 1987. | Zbl 0628.58006
[012] [13] K. P. Rybakowski and E. Zehnder, On a Morse equation in Conley's index theory for semiflows in metric spaces, Ergodic Theory Dyn. Systems 5, 1985, 123-143. | Zbl 0581.54026
[013] [14] M. Schwarz, Morse Homology, Birkhäuser Verlag, Basel, Boston, Berlin, 1993.