Directional transition matrix
Kokubu, Hiroshi ; Mischaikow, Konstantin ; Oka, Hiroe
Banach Center Publications, Tome 50 (1999), p. 133-144 / Harvested from The Polish Digital Mathematics Library

We present a generalization of topological transition matrices introduced in [6].

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:208929
@article{bwmeta1.element.bwnjournal-article-bcpv47i1p133bwm,
     author = {Kokubu, Hiroshi and Mischaikow, Konstantin and Oka, Hiroe},
     title = {Directional transition matrix},
     journal = {Banach Center Publications},
     volume = {50},
     year = {1999},
     pages = {133-144},
     zbl = {0956.37007},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv47i1p133bwm}
}
Kokubu, Hiroshi; Mischaikow, Konstantin; Oka, Hiroe. Directional transition matrix. Banach Center Publications, Tome 50 (1999) pp. 133-144. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv47i1p133bwm/

[000] [1] L. Arnold, C. Jones, K. Mischaikow, G. Raugel, Dynamical Systems Montecatini Terme 1994 (ed. R. Johnson), Lecture Notes in Math., Vol. 1609, Springer, 1995.

[001] [2] C. Conley, Isolated Invariant Sets and the Morse Index, CBMS Reg. Conf. Ser. in Math., 38, AMS, Providence, 1978.

[002] [3] R. Franzosa, The connection matrix theory for Morse decompositions, Trans. AMS 311 (1989) 781-803. | Zbl 0708.58021

[003] [4] T. Gedeon, H. Kokubu, K. Mischaikow, H. Oka, and J. Reineck, Conley index theory for fast-slow systems, I: One dimensional slow dynamics, to appear in J. Dynam. Diff. Eq. | Zbl 0945.34029

[004] [5] H. Kokubu, K. Mischaikow, and H. Oka, Existence of infinitely many connecting orbits in a singularly perturbed ordinary differential equations, Nonlinearity 9 (1996), 1263-1280. | Zbl 0898.34047

[005] [6] C. McCord and K. Mischaikow, Connected simple systems, transition matrices and heteroclinic bifurcations, Trans. A.M.S. 333 (1992), 397-422. | Zbl 0763.34028

[006] [7] C. McCord and K. Mischaikow, Equivalence of topological and singular transition matrices in the Conley index, Mich. Math. J. 42 (1995), 387-414. | Zbl 0853.58080

[007] [8] K. Mischaikow. M. Mrozek and J. Reineck, Singular index pairs, to appear in J. Dynam. Diff. Eq. | Zbl 0943.34028

[008] [9] J. Reineck, The connection matrix in Morse-Smale flows, Trans. A.M.S. 322 (1990), 523-545. | Zbl 0714.58027

[009] [10] J. Reineck, Connecting orbits in one-parameter families of flows, Ergod. Th. & Dynam. Sys. 8* (1988), 359-374. | Zbl 0675.58034