Some new techniques for finding periodic travelling waves are discussed.
@article{bwmeta1.element.bwnjournal-article-bcpv47i1p109bwm, author = {Hutson, V. and Mischaikow, K.}, title = {Periodic travelling waves}, journal = {Banach Center Publications}, volume = {50}, year = {1999}, pages = {109-114}, zbl = {0959.35092}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv47i1p109bwm} }
Hutson, V.; Mischaikow, K. Periodic travelling waves. Banach Center Publications, Tome 50 (1999) pp. 109-114. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv47i1p109bwm/
[000] [1] C. Conley and R. Gardner, An application of the generalized Morse index to travelling waves solutions of a competative reaction diffusion model, Ind. Univ. J. 33 (1979), 319-343. | Zbl 0565.58016
[001] [2] R. Gardner, Existence and stability of travelling wave solutions of competition models: a degree theoretic approach, JDE 44 (1982). | Zbl 0446.35012
[002] [3] R. Gardner, Existence of travelling wave solution of predator prey systems via the Conley index, SIAM J. Appl. Math. 44 (1984), 56-76. | Zbl 0541.35044
[003] [4] T. Gedeon, H. Kokubu, K. Mischaikow, H. Oka, and J. Reineck, The Conley index for fast-slow systems I: One-dimensional slow variables, J. Diff. Eq. Dyn., to appear. | Zbl 0945.34029
[004] [5] W. Huang, Uniqueness of bistable traveling wave for mutualist species, preprint 1998.
[005] [6] A. W. Leung, Systems of Nonlinear Partial Differential Equations, Kluwer, Dordrecht, 1989.
[006] [7] K. Mischaikow and V. Hutson, Travelling waves for mutualist species, SIAM J. Math. Anal. 24 (1993), 987-1008. | Zbl 0815.35044
[007] [8] K. Mischaikow and J. Reineck, Travelling waves in predator prey systems, SIAM J. Math. Anal. 24 (1993). | Zbl 0815.35045