We discuss the ultrasimplicial property of lattice-ordered abelian groups and their associated MV-algebras. We give a constructive proof of the fact that every lattice-ordered abelian group generated by three elements is ultrasimplicial.
@article{bwmeta1.element.bwnjournal-article-bcpv46i1p169bwm, author = {Mundici, Daniele and Panti, Giovanni}, title = {A constructive proof that every 3-generated l-group is ultrasimplicial}, journal = {Banach Center Publications}, volume = {50}, year = {1999}, pages = {169-178}, zbl = {1002.06014}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv46i1p169bwm} }
Mundici, Daniele; Panti, Giovanni. A constructive proof that every 3-generated l-group is ultrasimplicial. Banach Center Publications, Tome 50 (1999) pp. 169-178. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv46i1p169bwm/
[000] [BML67] G. Birkhoff and S. Mac Lane, Algebra. The Macmillan Co., New York, 1967.
[001] [Cha58] C. C. Chang, Algebraic analysis of many valued logics. Trans. Amer. Math. Soc., 88:467-490, 1958. | Zbl 0084.00704
[002] [Ell79] G. Elliott, On totally ordered groups, and . In Ring Theory (Proc. Conf. Univ. Waterloo, Waterloo, 1978), volume 734 of Lecture Notes in Math., pages 1-49. Springer, 1979.
[003] [Ewa96] G. Ewald, Combinatorial Convexity and Algebraic Geometry. Springer, 1996.
[004] [Ful93] W. Fulton, An introduction to Toric Varieties, volume 131 of Annals of Mathematics Studies. Princeton University Press, Princeton, N.J., 1993.
[005] [Han83] D. Handelman, Ultrasimplicial dimension groups. Arch. Math., 40:109-115, 1983. | Zbl 0513.46049
[006] [MP93] D. Mundici and G. Panti, The equivalence problem for Bratteli diagrams. Technical Report 259, Department of Mathematics, University of Siena, Siena, Italy, 1993.
[007] [Mun86] D. Mundici, Interpretation of AF C*-algebras in Łukasiewicz sentential calculus. J. of Functional Analysis, 65:15-63, 1986. | Zbl 0597.46059
[008] [Mun88] D. Mundici, Farey stellar subdivisions, ultrasimplicial groups, and of AF C*-algebras. Advances in Math., 68(1):23-39, 1988. | Zbl 0678.06008
[009] [Oda88] T. Oda, Convex Bodies and Algebraic Geometry. Springer, 1988.