Rasiowa and Sikorski [5] showed that in any Boolean algebra there is an ultrafilter preserving countably many given infima. In [3] we proved an extension of this fact and gave some applications. Here, besides further remarks, we present some of these results in a more general setting.
@article{bwmeta1.element.bwnjournal-article-bcpv46i1p119bwm, author = {Flum, J\"org}, title = {On the existence of prime ideals in Boolean algebras}, journal = {Banach Center Publications}, volume = {50}, year = {1999}, pages = {119-123}, zbl = {0929.06006}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv46i1p119bwm} }
Flum, Jörg. On the existence of prime ideals in Boolean algebras. Banach Center Publications, Tome 50 (1999) pp. 119-123. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv46i1p119bwm/
[000] [1] J. Barwise and Y. N. Moschovakis, Global inductive definability, Jour. Symb. Logic 43(1978), 521-534. | Zbl 0395.03021
[001] [2] E. Casanovas and R. Farré, Omitting types in incomplete theories, Jour. Symb. Logic 41(1996), 236-245. | Zbl 0854.03025
[002] [3] J. Flum, An extension of the lemma of Rasiowa and Sikorski, to appear. | Zbl 0919.03048
[003] [4] S. Koppelberg, General theory of Boolean algebras, Volume I of D. Monk, editor, Handbook of Boolean algebras, North-Holland, 1989.
[004] [5] H. Rasiowa and R. Sikorski, A proof of the completeness theorem of Gödel, Fund. Math. 37(1950), 193-200. | Zbl 0040.29303
[005] [6] C. Ryll-Nardzewski, On the categoricity in power ≤ ω, Bull. Acad. Pol. Sci. 7(1959), 545-548.