On the existence of prime ideals in Boolean algebras
Flum, Jörg
Banach Center Publications, Tome 50 (1999), p. 119-123 / Harvested from The Polish Digital Mathematics Library

Rasiowa and Sikorski [5] showed that in any Boolean algebra there is an ultrafilter preserving countably many given infima. In [3] we proved an extension of this fact and gave some applications. Here, besides further remarks, we present some of these results in a more general setting.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:208916
@article{bwmeta1.element.bwnjournal-article-bcpv46i1p119bwm,
     author = {Flum, J\"org},
     title = {On the existence of prime ideals in Boolean algebras},
     journal = {Banach Center Publications},
     volume = {50},
     year = {1999},
     pages = {119-123},
     zbl = {0929.06006},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv46i1p119bwm}
}
Flum, Jörg. On the existence of prime ideals in Boolean algebras. Banach Center Publications, Tome 50 (1999) pp. 119-123. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv46i1p119bwm/

[000] [1] J. Barwise and Y. N. Moschovakis, Global inductive definability, Jour. Symb. Logic 43(1978), 521-534. | Zbl 0395.03021

[001] [2] E. Casanovas and R. Farré, Omitting types in incomplete theories, Jour. Symb. Logic 41(1996), 236-245. | Zbl 0854.03025

[002] [3] J. Flum, An extension of the lemma of Rasiowa and Sikorski, to appear. | Zbl 0919.03048

[003] [4] S. Koppelberg, General theory of Boolean algebras, Volume I of D. Monk, editor, Handbook of Boolean algebras, North-Holland, 1989.

[004] [5] H. Rasiowa and R. Sikorski, A proof of the completeness theorem of Gödel, Fund. Math. 37(1950), 193-200. | Zbl 0040.29303

[005] [6] C. Ryll-Nardzewski, On the categoricity in power ≤ ω, Bull. Acad. Pol. Sci. 7(1959), 545-548.