Homotopy theory and circle actions on symplectic manifolds
Oprea, John
Banach Center Publications, Tome 43 (1998), p. 63-86 / Harvested from The Polish Digital Mathematics Library
Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:208911
@article{bwmeta1.element.bwnjournal-article-bcpv45i1p63bwm,
     author = {Oprea, John},
     title = {Homotopy theory and circle actions on symplectic manifolds},
     journal = {Banach Center Publications},
     volume = {43},
     year = {1998},
     pages = {63-86},
     zbl = {0926.53029},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv45i1p63bwm}
}
Oprea, John. Homotopy theory and circle actions on symplectic manifolds. Banach Center Publications, Tome 43 (1998) pp. 63-86. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv45i1p63bwm/

[000] [ABKLR] B. Aebischer, M. Borer, M. Kalin, Ch. Leuenberger and H. M. Reimann, Symplectic Geometry, Progress in Math., vol. 124, Birkhäuser, 1994.

[001] [AL] M. Audin and J. Lafontaine, Holomorphic Curves in Symplectic Geometry, Progress in Math., vol. 117, Birkhäuser, 1994. | Zbl 0802.53001

[002] [AM] R. Abraham and J. Marsden, Foundations of Mechanics, Addison-Wesley, 2nd ed., 1978.

[003] [AP] C. Allday and V. Puppe, Cohomological Methods in Transformation Groups, Cambridge Studies in Advanced Mathematics 32, Cambridge U. Press, 1993. | Zbl 0799.55001

[004] [Au1] M. Audin, The Topology of Torus Actions on Symplectic Manifolds, Progress in Math., vol. 93, Birkhäuser, 1991.

[005] [Au2] M. Audin, Exemples de variétés presque complexes, L'Enseignement Math. 37 (1991), 175-190.

[006] [BG] C. Benson and C. Gordon, Kähler and symplectic structures on nilmanifolds, Topology 27 (1988), 513-518. | Zbl 0672.53036

[007] [Bes] A. Besse, Einstein Manifolds, Ergebnisse der Math. und ihrer Grenz. (3), vol. 10, Springer-Verlag, 1987.

[008] [BoHi] A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces, Amer. J. Math. 80 (1958), 458-538. | Zbl 0097.36401

[009] [Br] G. Bredon, Introduction to Compact Transformation Groups, Academic Press, 1972. | Zbl 0246.57017

[010] [BH] W. Browder and W-C. Hsiang, G-Actions and the Fundamental Group, Invent. Math. 65 (1982), 411-424. | Zbl 0519.57034

[011] [DGMS] P. Deligne, P. Griffiths, J. Morgan, and D. Sullivan, Real homotopy theory of Kähler manifolds, Invent. Math. 29 (1975), 245-274. | Zbl 0312.55011

[012] [Fr] T. Frankel, Fixed points and torsion on Kähler manifolds, Annals of Math. 70 no. 1 (1959), 1-8. | Zbl 0088.38002

[013] [G1] D. Gottlieb, Applications of bundle map theory, Trans. Amer. Math. Soc. 171 (1972), 23-50. | Zbl 0251.55018

[014] [G2] D. Gottlieb, The trace of an action and the degree of a map, Trans. Amer. Math. Soc. 293 (1986), 381-410. | Zbl 0593.57017

[015] [G3] D. Gottlieb, Lifting actions in fibrations, Lecture Notes in Math., vol. 657, Springer-Verlag, (1977), 217-254.

[016] [GM] P. Griffiths and J. Morgan, Rational Homotopy Theory and Differential Forms, Birkhäuser, 1981.

[017] [Has] K. Hasegawa, Minimal models of nilmanifolds, Proc. Amer. Math. Soc. 106 (1989), 65-71.

[018] [Has] A. Hattori and T. Yoshida, Lifting compact group actions in fiber bundles, Japan. J. Math. 2 (1976), 13-25. | Zbl 0346.57014

[019] [Kr] V. Kraines, Topology of quaternionic manifolds, Trans. Amer. Math. Soc. 122 (1966), 357-367. | Zbl 0148.16101

[020] [LO1] G. Lupton and J. Oprea, Symplectic manifolds and formality, J. Pure and Appl. Algebra 91 (1994), 193-207. | Zbl 0789.55010

[021] [LO2] G. Lupton and J. Oprea, z Cohomologically symplectic spaces: toral actions and the Gottlieb group, Trans. Amer. Math. Soc. 347 no. 1 (1995), 261-288. | Zbl 0836.57019

[022] [Mas] W. Massey, The non-existence of almost complex structures on quaternionic projective spaces, Pac. J. Math. 12 (1962), 1379-1384. | Zbl 0112.14702

[023] [Mc1] D. McDuff, Symplectic diffeomorphisms and the flux homomorphism, Invent. Math. 77 (1984), 353-366. | Zbl 0538.53041

[024] [Mc2] D. McDuff, Examples of simply-connected, symplectic non-Kählerian manifolds, J. Diff. Geom. 20 (1984), 267-277. | Zbl 0567.53031

[025] [Mc3] D. McDuff, The moment map for circle actions on symplectic manifolds, J. Geom. Phys. 5 no. 2 (1988), 149-160. | Zbl 0696.53023

[026] [McS] D. McDuff and D. Salamon, Introduction to Symplectic Topology, Oxford Math. Monographs, Oxford U. Press, 1995. | Zbl 0844.58029

[027] [Mo] G. Mostow, Factor spaces of solvable groups, Annals of Math. 60 (1954), 1-27. | Zbl 0057.26103

[028] [No] K. Nomizu, On the cohomology of homogeneous spaces of nilpotent Lie groups, Annals of Math. 59 (1954), 531-538. | Zbl 0058.02202

[029] [On1] K. Ono, Equivariant projective imbedding theorem for symplectic manifolds, J. Fac. Sci. Univ. Tokyo IA Math. 35 (1988), 381-392. | Zbl 0655.53027

[030] [On2] K. Ono, Obstruction to circle group actions preserving symplectic structure, Hokkaido Math. J. 21 (1992), 99-102. | Zbl 0749.53020

[031] [On3] K. Ono, Some remarks on group actions in symplectic geometry, J. Fac. Sci. Univ. Tokyo 35 (1988), 431-437. | Zbl 0711.53025

[032] [Sp] E. Spanier, Algebraic Topology, McGraw-Hill, 1966.

[033] [Su] D. Sullivan, Infinitesimal computations in topology, Publ. IHES 47 (1978), 269-331. | Zbl 0374.57002

[034] [Th] W. Thurston, Some simple examples of symplectic manifolds, Proc. Amer. Math. Soc. 55 (1976), 467-468. | Zbl 0324.53031

[035] [Ti] D. Tischler, Closed 2-forms and an embedding theorem for symplectic manifolds, J. Diff. Geom. 12 (1977), 229-235. | Zbl 0386.58001

[036] [TO] A. Tralle and J. Oprea, Symplectic manifolds with no Kähler structure, Lecture Notes in Math., vol. 1661, Springer-Verlag, 1997. | Zbl 0891.53001

[037] [Wa] R. Warfield, Nilpotent Groups, Lecture Notes in Math., vol. 513, Springer-Verlag, 1976.

[038] [Yau] S. T. Yau, Remarks on the group of isometries of a riemannian manifold, Topology 16 (1977), 239-247. | Zbl 0372.53020