In this paper we will be interested in results surrounding the following basic question: what are the homotopy properties that one can extract from a gradient flow? We approach this question by decomposing it into three parts: 1. Identify what are the homotopical objects that are provided by the flow (e.g. critical points, Conley indexes). 2. Discover what are the relations that have to be satisfied by these objects (e.g. Morse inequalities, Lusternik-Schnirelmann type inequalities). 3. (The Realizability Problem.) Given some homotopy objects that satisfy the relations from 2., is there a corresponding flow? Is this flow unique up to some equivalence relation? We will consider only gradient flows induced by functions with isolated critical points, restrict our discussion to the finite dimensional, compact context and concentrate on the non-Morse case. One way to look at these questions in this case is to first treat numerical invariants, then local invariants, and finally, pairwise invariants (that concern pairs of consecutive critical points)... At each level, we can look at the points 1.,2.,3. above.
@article{bwmeta1.element.bwnjournal-article-bcpv45i1p41bwm, author = {Cornea, Octavian}, title = {Homotopical dynamics of gradient flows}, journal = {Banach Center Publications}, volume = {43}, year = {1998}, pages = {41-46}, zbl = {0931.37005}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv45i1p41bwm} }
Cornea, Octavian. Homotopical dynamics of gradient flows. Banach Center Publications, Tome 43 (1998) pp. 41-46. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv45i1p41bwm/
[000] [1] T. Bartsch, Critical point theory and group actions, Springer 1993.
[001] [2] M. Clapp and D. Puppe, The generalized Lusternik-Schnirelmann category of a product space, Trans. of the A.M.S. 321 (1990), 525-532. | Zbl 0709.55001
[002] [3] R. Cohen, J. D. S. Jones and G. Segal, Homotopical Morse Theory, preprint 1992.
[003] [4] R. Cohen, J. D. S. Jones and G. Segal, Floer's infinite dimensional Morse theory and homotopy theory, The Floer memorial Volume, Birkhäuser (1995). | Zbl 0843.58019
[004] [5] Ch. Conley, Isolated invariant sets and the Morse index, CBMS Regional Conf. Ser. in Math. 38, Amer. Math. Soc., Providence, R. I., 1976.
[005] [6] O. Cornea, Cone-length and Lusternik Schnirelmann category, Topology 33 (1994), 95-111. | Zbl 0811.55004
[006] [7] O. Cornea, Strong L.S.-category equals cone-length, Topology 34 (1995), 377-381. | Zbl 0833.55004
[007] [8] O. Cornea, Cone-decompositions and degenerate critical points, Proc. of the London Math. Soc. 77 (1998), 437-461.
[008] [9] O. Cornea, Spanier-Whitehead duality and critical points, Homotopy Theory via Algebraic Geometry and Group Representations, AMS Contemp. Math. 220 (1998).
[009] [10] O. Cornea, Some properties of relative L.S.-category, Fields Inst. Commun. 19, AMS (1998), 67-72. | Zbl 0898.55002
[010] [11] O. Cornea, Y. Felix and J. M. Lemaire, Rational Category and Cone-length of Poincaré Complexes, Topology 37 (1998), 743-748. | Zbl 0899.55003
[011] [12] O. Cornea, Homotopical Dynamics: Suspension and Duality, to appear in Erg. Theory & Dyn. Syst. | Zbl 0984.37017
[012] [13] O. Cornea, Homotopical Dynamics II: Hopf invariants smoothings and the Morse complex, preprint August 1998.
[013] [14] E. N. Dancer, Degenerate critical points, homotopy indices and Morse inequalities, J. Reine Ang. Math. 350 (1984), 1-22. | Zbl 0525.58012
[014] [15] N. Dupont, A counterexample to the Lemaire-Sigrist conjecture, to appear in Topology.
[015] [16] Y. Eliashberg and M. Gromov, Lagrangian Intersection Theory, preprint December 1996.
[016] [17] E. Fadell and S. Y. Husseini, Relative category, products and coproducts, preprint 1994. | Zbl 0860.55011
[017] [18] Y. Félix and S. Halperin, Rational L.S. category and its applications, Trans. of the A.M.S. 273 (1982), 1-37 .
[018] [19] Y. Félix and J. C. Thomas, Sur la structure des espaces de L.S. catégorie deux, Ill. J. of Math. 30 (1986), 574-593 . | Zbl 0585.55010
[019] [20] J. Franks, Morse-Smale flows and homotopy theory, Topology 18 (1979), 199-215. | Zbl 0426.58013
[020] [21] R. Franzosa, Connection matrices for the Conley index, Trans. AMS. | Zbl 0896.58053
[021] [22] T. Ganea, Lusternik-Schnirelmann category and strong category, Ill. J. of Math. 11 (1967), 417-427. | Zbl 0149.40703
[022] [23] I. M. James, On category, in the sense of Lusternik and Schnirelmann, Topology 17 (1978), 331-348. | Zbl 0408.55008
[023] [24] J.-M. Lemaire and F. Sigrist, Sur les invariants d'homotopie rationnelles liés à la L.S. catégorie, Comm. Math. Helv. 56 (1981), 103-122.
[024] [25] L. Ljusternik and L. Schnirelmann, Méthodes topologiques dans les problèmes variationnels, Hermann, Paris, (1934).
[025] [26] C. McCord, Poincaré-Lefschetz duality for the homology Conley index, Trans. of the A.M.S. 329 (1992), 233-252. | Zbl 0755.55011
[026] [27] P. M. Moyaux, Two lower bounds for the relative Lusternik Schnirelmann category, preprint Spring 1998.
[027] [28] J. Pears, Degenerate Critical Points and the Conley Index, Thesis, University of Edinburgh, 1995.
[028] [29] Y. Rudyak, On category weight and its applications, To appear in Topology.
[029] [30] Y. Rudyak and J. Oprea, The Lusternik Schnirelmann category of Symplectic Manifolds, preprint, Summer 1997. | Zbl 0931.53039
[030] [31] D. Salamon, Connected simple systems and the Conley index of isolated invariant sets, Trans of the A.M.S. 291 (1985) 1-41. | Zbl 0573.58020
[031] [32] J. Strom, Two special cases of the Ganea conjecture, To appear in Trans. of the A.M.S.
[032] [33] F. Takens, The Lusternik-Schnirelmann categories of a product space. Comp. Math. 22 (1970), 175-180. | Zbl 0198.28302
[033] [34] L. Vanderbrouck, Adjunction spaces satisfying the Ganea conjecture, preprint 1997.