This note gives a complete description of the cohomology algebra of any orientable Seifert manifold with ℤ/p coefficients, for an arbitrary prime p. As an application, the existence of a degree one map from an orientable Seifert manifold onto a lens space is completely determined. A second application shows that the Lusternik-Schnirelmann category for a large class of Seifert manifolds is equal to 3, which in turn is used to verify the Ganea conjecture for these Seifert manifolds.
@article{bwmeta1.element.bwnjournal-article-bcpv45i1p25bwm, author = {Bryden, J. and Zvengrowski, P.}, title = {The cohomology algebras of orientable Seifert manifolds and applications to Lusternik-Schnirelmann category}, journal = {Banach Center Publications}, volume = {43}, year = {1998}, pages = {25-39}, zbl = {0939.57018}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv45i1p25bwm} }
Bryden, J.; Zvengrowski, P. The cohomology algebras of orientable Seifert manifolds and applications to Lusternik-Schnirelmann category. Banach Center Publications, Tome 43 (1998) pp. 25-39. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv45i1p25bwm/
[000] [1] J. Bryden, C. Hayat-Legrand, H. Zieschang and P. Zvengrowski, L'anneau de cohomologie d'une variété de Seifert, C. R. Acad. Sci. Paris 324, Sér. I (1997), 323-326.
[001] [2] J. Bryden, C. Hayat-Legrand, H. Zieschang and P. Zvengrowski, The cohomology ring of a class of Seifert manifolds, Top. and its Appl., to appear. | Zbl 0964.57019
[002] [3] J. Bryden and P. Zvengrowski, The cohomology ring of the orientable Seifert manifolds II, preprint. | Zbl 1025.57031
[003] [4] S. Eilenberg and T. Ganea, On the Lusternik-Schnirelmann category of abstract groups, Ann. of Math. 65 (1957), 517-518. | Zbl 0079.25401
[004] [5] R. H. Fox, Free differential calculus. I. Derivations in the free group ring, Ann. of Math. 57 (1953), 547-560. | Zbl 0050.25602
[005] [6] R. H. Fox, On the Lusternik-Schnirelmann category, Ann. of Math. 42 (1941), 333-370. | Zbl 67.0741.02
[006] [7] C. Hayat-Legrand, S. Wang and H. Zieschang, Degree-one maps onto lens spaces, Pac. J. Math. 176 (1996), 19-32. | Zbl 0877.57007
[007] [8] J. Hempel, 3-Manifolds, Annals of Math. Studies, vol. 86, Princeton University Press, Princeton, New Jersey 1976, 115-135.
[008] [9] N. Iwase, Ganea's conjecture on Lusternik-Schnirelmann category, preprint. | Zbl 0947.55006
[009] [10] I. M. James, On category, in the sense of Lusternik-Schnirelmann, Topology 17 (1978), 331-348. | Zbl 0408.55008
[010] [11] S. MacLane, Homology, Springer-Verlag, Berlin, 1963.
[011] [12] J. M. Montesinos, Classical Tesselations and Three-Manifolds, Springer-Verlag, Berlin, 1987.
[012] [13] P. Orlik, Seifert Manifolds, Lecture Notes in Math. 291, Springer-Verlag, Berlin, 1972.
[013] [14] K. Reidemeister, Homotopieringe und Linsenräume, Abh. Math. Sem. Univ. Hamburg 11 (1935), 102-109.
[014] [15] Y. B. Rudyak, On category weight and its applications, preprint.
[015] [16] P. Scott, The geometries of 3-manifolds, Bull. London Math. Soc. 15 No. 56 (1983), 401-487. | Zbl 0561.57001
[016] [17] H. Seifert, Topologie dreidimensionaler gefaserter Räume, Acta Math. 60 (1932), 147-238. | Zbl 0006.08304
[017] [18] H. Seifert and W. Threlfall, A Textbook of Topology, Academic Press, 1980.
[018] [19] A. R. Shastri, J. G. Williams and P. Zvengrowski, Kinks in general relativity, International Journal of Theoretical Physics 19 (1980), 1-23. | Zbl 0448.55009
[019] [20] E. H. Spanier, Algebraic Topology, McGraw-Hill, New York, 1966.
[020] [21] N. Steenrod and D. B. A. Epstein, Cohomology Operations, The University of Princeton Press, Princeton, N.J., 1962.