An extension of Miller's version of the de Rham Theorem with any coefficients
Garvín, Antonio ; Lechuga, Luis ; Murillo, Aniceto ; Muñoz, Vicente ; Viruel, Antonio
Banach Center Publications, Tome 43 (1998), p. 169-176 / Harvested from The Polish Digital Mathematics Library

In this paper we present an approximation to the de Rham theorem for simplicial sets with any coefficients based, using simplicial techniques, on Poincaré's lemma and q-extendability.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:208901
@article{bwmeta1.element.bwnjournal-article-bcpv45i1p169bwm,
     author = {Garv\'\i n, Antonio and Lechuga, Luis and Murillo, Aniceto and Mu\~noz, Vicente and Viruel, Antonio},
     title = {An extension of Miller's version of the de Rham Theorem with any coefficients},
     journal = {Banach Center Publications},
     volume = {43},
     year = {1998},
     pages = {169-176},
     zbl = {0945.55007},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv45i1p169bwm}
}
Garvín, Antonio; Lechuga, Luis; Murillo, Aniceto; Muñoz, Vicente; Viruel, Antonio. An extension of Miller's version of the de Rham Theorem with any coefficients. Banach Center Publications, Tome 43 (1998) pp. 169-176. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv45i1p169bwm/

[000] [1] H. Cartan, Théories cohomologiques, Invent. Math. 35 (1976), 261-271. | Zbl 0334.55005

[001] [2] B. Cenkl, Cohomology operations from higher products in the de Rham complex, Pacific Journal of Math. 140 1 (1989), 21-33.

[002] [3] Y. Félix, S. Halperin and J. C. Tomas, Rational Homotopy Theory, Preprint Univ. of Toronto, version 96.2, (1996).

[003] [4] S. Halperin, Lectures on minimal models, Mémoire de la Soc. Math. de France, 9/10 (1983). | Zbl 0536.55003

[004] [5] P. May, Simplicial objects in algebraic topology, Van Nostrand, 1967.

[005] [6] E. Y. Miller, De Rham cohomology with arbitrary coefficients, Topology 17 (1978), 193-203. | Zbl 0386.55011

[006] [7] D. Quillen, Rational homotopy theory, Annals of Math. 90 (1969), 205-295. | Zbl 0191.53702

[007] [8] D. Sullivan, Infinitesimal Computations in Topology, Publ. de l'I.H.E.S. 47 (1978), 269-331.

[008] [9] R. Swan, Thom's theory of differential forms on simplicial sets, Topology 14 (1975). 271-273. | Zbl 0319.58004