It is proved that a closed r-form ω on a manifold M defines a cohomology (called ω-coeffective) on M. A general algebraic machinery is developed to extract some topological information contained in the ω-coeffective cohomology. The cases of 1-forms, symplectic forms, fundamental 2-forms on almost contact manifolds, fundamental 3-forms on -manifolds and fundamental 4-forms in quaternionic manifolds are discussed.
@article{bwmeta1.element.bwnjournal-article-bcpv45i1p155bwm, author = {Fern\'andez, Marisa and Ib\'a\~nez, Ra\'ul and de Le\'on, Manuel}, title = {The geometry of a closed form}, journal = {Banach Center Publications}, volume = {43}, year = {1998}, pages = {155-167}, zbl = {0930.53048}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv45i1p155bwm} }
Fernández, Marisa; Ibáñez, Raúl; de León, Manuel. The geometry of a closed form. Banach Center Publications, Tome 43 (1998) pp. 155-167. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv45i1p155bwm/
[000] [1] L. C. de Andrés, M. Fernández, M. de León, R. Ibáñez and J. Mencía, On the coeffective cohomology of compact symplectic manifolds, C. R. Acad. Sci. Paris, 318, Série I, (1994), 231-236. | Zbl 0814.57020
[001] [2] M. Berger, Sur les groupes d'holonomie des variétés à connexion affine et des variétés riemannienes, Bull. Soc. Math. France, 83 (1955), 279-330. | Zbl 0068.36002
[002] [3] D. E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Math. 509, Springer-Verlag, Berlin, 1976. | Zbl 0319.53026
[003] [4] E. Bonan, Sur l'algèbre extérieure d'une variété presque hermitienne quaternionique, C. R. Acad. Sci. Paris, 295, Série I (1982), 115-118. | Zbl 0503.53016
[004] [5] E. Bonan, Isomorphismes sur une variété presque hermitienne quaternionique, in: Proc. of the Meeting on Quaternionic Structures in Math. and Physics, Trieste, SISSA, (1994), pp. 1-6.
[005] [6] T. Bouché, La cohomologie coeffective d'une variété symplectique, Bull. Sci. Math., 114 (2) (1990), 115-122. | Zbl 0714.58001
[006] [7] G. B. Brown and A. Gray, Vector cross products, Comment. Math. Helv. 42 (1967), 222-236. | Zbl 0155.35702
[007] [8] F. Cantrijn, L. Ibort and M. de León, On the geometry of multisymplectic manifolds, to appear in Journal of the Australian Mathematical Society. | Zbl 0968.53052
[008] [9] D. Chinea, M. de León and J. C. Marrero, Topology of cosymplectic manifolds, J. Math. Pures et Appl., 72 (6) (1993), 567-591. | Zbl 0845.53025
[009] [10] D. Chinea, M. de León and J. C. Marrero, Coeffective cohomology on cosymplectic manifolds, Bull. Sci. Math., 119 (1) (1995), 3-20. | Zbl 0839.58005
[010] [11] P. Deligne, Ph. Griffiths, J. Morgan and D. Sullivan, Real homotopy theory of Kähler manifolds, Invent. Math. 29 (1975), 245-274. | Zbl 0312.55011
[011] [12] M. Fernández and A. Gray, Riemannian manifolds with structure group , Ann. Mat. Pura Appl. (IV) 32 (1982), 19-45. | Zbl 0524.53023
[012] [13] M. Fernández, R. Ibáñez and M. de León, A Nomizu's theorem for the coeffective cohomology, Math. Z. 226 (1997), 11-23. | Zbl 0886.58002
[013] [14] M. Fernández, R. Ibáñez and M. de León, The coeffective cohomology for compact symplectic nilmanifolds, in: Proceedings of the III Fall Workshop Differential Geometry and its Applications, Granada, Sept. 26-27, 1994, Anales de Física, Monografías 2, CIEMAT-RSFE, Madrid, 1995, pp. 131-144. | Zbl 0846.58002
[014] [15] M. Fernández, R. Ibáñez and M. de León, Coeffective and de Rham cohomologies of symplectic manifolds, to appear in J. of Geometry and Physics 491 (1998). | Zbl 0972.53050
[015] [16] M. Fernández, R. Ibáñez and M. de León, Coeffective and de Rham cohomologies on almost contact manifolds, Differential Geometry and Its Applications 8 (1998), 285-303. | Zbl 0940.53022
[016] [17] M. Fernández, R. Ibáñez and M. de León, Coeffective cohomology of quaternionic Kähler manifolds, Conference on Differential Geometry, Budapest, July 27-30, 1996. | Zbl 0939.53030
[017] [18] M. Fernández and L. Ugarte, Dolbeault cohomology for -manifolds, Geometriae Dedicata 70 (1998), 57-86.
[018] [19] M. Fernández and L. Ugarte, A differential complex for locally conformal calibrated -manifolds, preprint 1996. | Zbl 0949.53038
[019] [20] Ph. Griffiths and J. Morgan, Rational homotopy theory and differential forms, Progress in Math. 16, Birkhäuser, 1981. | Zbl 0474.55001
[020] [21] R. Ibáñez, Coeffective-Dolbeault cohomology of compact indefinite Kähler manifolds, Osaka J. Math. 34 (1997), 553-571. | Zbl 0901.53020
[021] [22] V. Kraines, Topology of quaternionic manifolds, Trans. Amer. Math. Soc. 122 (1966), 357-367. | Zbl 0148.16101
[022] [23] P. Libermann and Ch. M. Marle, Symplectic geometry and analytical mechanics, Kluwer, Dordrecht, 1987. | Zbl 0643.53002
[023] [24] G. Lupton and J. Oprea, private communication.
[024] [25] G. Lupton and J. Oprea, Symplectic manifolds and formality, J. Pure and Appl. Algebra 91 (1994), 193-207. | Zbl 0789.55010
[025] [26] D. McDuff and D. Salamon, Introduction to symplectic topology, Oxford Math. Monographs, Oxford Univ. Press, 1995. | Zbl 0844.58029
[026] [27] J. Moser, On the volume elements on manifolds, Trans. Amer. Soc. Math., 120 (1965), 286-295. | Zbl 0141.19407
[027] [28] K. Nomizu, On the cohomology of compact homogeneous spaces of nilpotent Lie group, Annals of Math. 59 (2) (1954), 531-538. | Zbl 0058.02202
[028] [29] J. A. Oubiña, New classes of almost contact metric structures, Publicationes Mathematicae 32 (3-4) (1985), 187-193. | Zbl 0611.53032
[029] [30] M. S. Raghunatan, Discrete subgroups of Lie groups, Ergebnisse der Mathematik 68, Springer-Verlag, Berlin, 1972.
[030] [31] R. Reyes, Some special geometries defined by Lie groups, Thesis, Oxford, 1993.
[031] [32] S. Salamon, Riemannian Geometry and Holonomy Groups, Pitman Research Notes in Math. Series 201, Longman, Boston, 1989. | Zbl 0685.53001
[032] [33] A. Swann, Hyperkähler and quaternionic Kähler geometry, Math. Ann. 289 (1991), 421-450. | Zbl 0711.53051
[033] [34] A. Tralle and J. Oprea, Symplectic Manifolds with no Kähler Structure, Lecture Notes in Math. 1661, Springer, Berlin, 1997. | Zbl 0891.53001
[034] [35] I. Vaisman, Locally conformal symplectic manifolds, Internat. J. Math. & Math. Sci. 8 (1985), 3, 521-536. | Zbl 0585.53030
[035] [36] A. Weinstein, Lectures on symplectic manifolds, CBMS, Amer. Math. Soc. 29, Providence (R.I.), 1977.