In this paper we study the degeneration of both the cohomology and the cohomotopy Frölicher spectral sequences in a special class of complex manifolds, namely the class of compact nilmanifolds endowed with a nilpotent complex structure. Whereas the cohomotopy spectral sequence is always degenerate for such a manifold, there exist many nilpotent complex structures on compact nilmanifolds for which the classical Frölicher spectral sequence does not collapse even at the second term.
@article{bwmeta1.element.bwnjournal-article-bcpv45i1p137bwm, author = {Cordero, L. and Fern\'andez, M. and Gray, A. and Ugarte, L.}, title = {Dolbeault homotopy theory and compact nilmanifolds}, journal = {Banach Center Publications}, volume = {43}, year = {1998}, pages = {137-154}, zbl = {0943.32015}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv45i1p137bwm} }
Cordero, L.; Fernández, M.; Gray, A.; Ugarte, L. Dolbeault homotopy theory and compact nilmanifolds. Banach Center Publications, Tome 43 (1998) pp. 137-154. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv45i1p137bwm/
[000] [1] L. C. de Andrés, M. Fernández, A. Gray and J. J. Mencía, Compact manifolds with indefinite Kähler metrics, Proc. VIth Int. Coll. Differential Geometry (Ed. L.A. Cordero), Santiago (Spain) 1988, Cursos y Congresos 61, 25-50, Univ. Santiago de Compostela (Spain) 1989. | Zbl 0696.53037
[001] [2] L. C. de Andrés, M. Fernández, A. Gray and J. J. Mencía, Moduli spaces of complex structures on compact four dimensional nilmanifolds, Bolletino U.M.I. (7) 5-A (1991), 381-389. | Zbl 0764.53024
[002] [3] E. Abbena, S. Garbiero and S. Salamon, private communication.
[003] [4] W. Barth, C. Peters and A. Van de Ven, Compact Complex Surfaces, Ergebnisse der Mathematik (3) 4, Springer-Verlag, Berlin, Heidelberg, 1984.
[004] [5] A. K. Bousfield and V. K. A. M. Gugenheim, On PL de Rham theory and rational homotopy type, Memoirs Amer. Math. Soc. 8 (179) (1976). | Zbl 0338.55008
[005] [6] C. Benson and C. Gordon, Kähler and symplectic structures on nilmanifolds, Topology 27 (1988), 513-518. | Zbl 0672.53036
[006] [7] L. A. Cordero, M. Fernández and A. Gray, Symplectic manifolds with no Kähler structure, Topology 25 (1986), 375-380. | Zbl 0596.53030
[007] [8] L. A. Cordero, M. Fernández and A. Gray, The Frölicher spectral sequence for compact nilmanifolds, Illinois J. Math. 35 (1991), 56-67. | Zbl 0721.58003
[008] [9] L. A. Cordero, M. Fernández, A. Gray and L. Ugarte, A general description of the terms in the Frölicher spectral sequence, Diff. Geom. Appl. 7 (1997), 75-84. | Zbl 0880.53055
[009] [10] L. A. Cordero, M. Fernández, A. Gray and L. Ugarte, Compact nilmanifolds with nilpotent complex structure: Dolbeault cohomology, preprint 1997. | Zbl 0965.32026
[010] [11] L. A. Cordero, M. Fernández, A. Gray and L. Ugarte, Frölicher spectral sequence of compact nilmanifolds with nilpotent complex structure, Proc. Conference on Differential Geometry, Budapest, July 27-30, 1996 (to appear). | Zbl 0943.57015
[011] [12] P. Deligne, P. Griffiths, J. Morgan and D. Sullivan, Real homotopy theory of Kähler manifolds, Invent. Math. 29 (1975), 245-274. | Zbl 0312.55011
[012] [13] M. Fernández, M. J. Gotay and A. Gray, Four-dimensional compact parallelizable symplectic and complex manifolds, Proc. Amer. Math. Soc. 103 (1988), 1209-1212. | Zbl 0656.53034
[013] [14] A. Frölicher, Relations between the cohomology groups of Dolbeault and topological invariants, Proc. Nat. Acad. Sci. U.S.A. 41 (1955), 641-644. | Zbl 0065.16502
[014] [15] P. Griffiths and J. Harris, Principles of Algebraic Geometry, Wiley, New York, 1978. | Zbl 0408.14001
[015] [16] K. Hasegawa, Minimal models of nilmanifolds, Proc. Amer. Math. Soc. 106 (1989), 65-71. | Zbl 0691.53040
[016] [17] K. Kodaira, On the structure of compact complex analytic surfaces, I, Amer. J. Math. 86 (1964), 751-798. | Zbl 0137.17501
[017] [18] G. Lupton and J. Oprea, Symplectic manifolds and formality, J. Pure Appl. Algebra 91 (1994), 193-207. | Zbl 0789.55010
[018] [19] G. Lupton and J. Oprea, Cohomologically symplectic spaces: toral actions and the Gottlieb group, Trans. Amer. Math. Soc. 347 (1995), 261-288. | Zbl 0836.57019
[019] [20] I. A. Mal'cev, A class of homogeneous spaces, Amer. Math. Soc. Transl. No. 39 (1951).
[020] [21] I. Nakamura, Complex parallelisable manifolds and their small deformations, J. Differential Geom. 10 (1975), 85-112. | Zbl 0297.32019
[021] [22] J. Neisendorfer and L. Taylor, Dolbeault Homotopy Theory, Trans. Amer. Math. Soc. 245 (1978), 183-210. | Zbl 0441.55014
[022] [23] K. Nomizu, On the cohomology of compact homogeneous spaces of nilpotent Lie groups, Ann. of Math. 59 (1954), 531-538. | Zbl 0058.02202
[023] [24] J. Oprea and A. Tralle, Symplectic Manifolds with no Kähler Structure, Lecture Notes in Math. 1661, Springer, Berlin, 1997. | Zbl 0891.53001
[024] [25] H. Pittie, The nondegeneration of the Hodge-de Rham spectral sequence, Bull. Amer. Math. Soc. 20 (1989), 19-22. | Zbl 0671.32024
[025] [26] Y. Sakane, On compact parallelisable solvmanifolds, Osaka J. Math. 13 (1976), 187-212. | Zbl 0361.22005
[026] [27] D. Tanré, Modèle de Dolbeault et fibré holomorphe, J. Pure Appl. Algebra 91 (1994), 333-345. | Zbl 0829.55007
[027] [28] W. P. Thurston, Some simple examples of symplectic manifolds, Proc. Amer. Math. Soc. 55 (1976), 467-468. | Zbl 0324.53031
[028] [29] A. Tralle, Applications of rational homotopy to geometry (results, problems, conjectures), Expo. Math. 14 (1996), 425-472. | Zbl 0873.55012
[029] [30] H. C. Wang, Complex parallelisable manifolds, Proc. Amer. Math. Soc. 5 (1954), 771-776. | Zbl 0056.15403