Halperin has conjectured that the Serre spectral sequence of any fibration that has fibre space a certain kind of elliptic space should collapse at the -term. In this paper we obtain an equivalent phrasing of this conjecture, in terms of formality relations between base and total spaces in such a fibration (Theorem 3.4). Also, we obtain results on relations between various numerical invariants of the base, total and fibre spaces in these fibrations. Some of our results give weak versions of Halperin’s conjecture (Remark 4.4 and Corollary 4.5). We go on to establish some of these weakened forms of the conjecture (Theorem 4.7). In the last section, we discuss extensions of our results and suggest some possibilities for future work.
@article{bwmeta1.element.bwnjournal-article-bcpv45i1p115bwm, author = {Lupton, Gregory}, title = {Variations on a conjecture of Halperin}, journal = {Banach Center Publications}, volume = {43}, year = {1998}, pages = {115-135}, zbl = {0931.55007}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv45i1p115bwm} }
Lupton, Gregory. Variations on a conjecture of Halperin. Banach Center Publications, Tome 43 (1998) pp. 115-135. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv45i1p115bwm/
[000] [Au] Aubry, M. Homotopy Theory and Models, DMV Seminar 24 (1995) Birkhäuser, Basel.
[001] [Ba] Baues, H. J. Algebraic Homotopy, Cambridge Tracts in Mathematics, vol. 15, Cambridge University Press, Cambridge, 1989.
[002] [Co] Cornea, O. There is Just One Rational Cone-Length, Transactions A. M. S. 344 (1994) 835-848. | Zbl 0813.55003
[003] [Co-Fé-Le] Cornea, O., Y. Félix and J.-M. Lemaire, Rational Category and Cone Length of Poincaré Complexes, Topology 37 (1998) 743-748. | Zbl 0899.55003
[004] [D-G-M-S] Deligne, P., P. Griffiths, J. Morgan and D. Sullivan, Real Homotopy Theory of Kähler Manifolds, Invent. Math. 29 (1975) 245-274.
[005] [Fé] Félix, Y. La Dichotomie Elliptique-Hyperbolique en Homotopie Rationnelle, Astérisque 176 (1989). | Zbl 0691.55001
[006] [Fé-Ha1] Y. Félix and S. Halperin, Formal Spaces with Finite-Dimensional Rational Homotopy, Transactions A. M. S. 270 (1982) 575-588. | Zbl 0489.55009
[007] [Fé-Ha2] Y. Félix and S. Halperin, Rational L-S Category and its Applications, Transactions A. M. S. 273 (1982) 1-37. | Zbl 0508.55004
[008] [Fé-Ha-Le] Félix, Y. S. Halperin and J.-M. Lemaire, The Rational LS Category of Products and of Poincaré Duality Complexes, Topology 37 (1998) 749-756. | Zbl 0897.55001
[009] [Fé-Th] Y. Félix and J.-C. Thomas, The Monoid of Self-Homotopy Equivalences of Some Homogeneous Spaces, Expositiones Math. 12 1994 305-322. | Zbl 0846.55005
[010] [Gr-Mo] P. Griffiths and J. Morgan, Rational Homotopy Theory and Differential Forms, Progress in Mathematics, vol. 15, Birkhäuser, Boston 1983.
[011] [Ha1] Halperin, S. Finiteness in the Minimal Models of Sullivan, Transactions A. M. S. 230 (1977) 173-199. | Zbl 0364.55014
[012] [Ha2] Halperin, S. Rational Fibrations, Minimal Models and Fiberings of Homogeneous Spaces, Transactions A. M. S. 244 (1978) 199-223.
[013] [Ha3] Halperin, S. Lectures on Minimal Models, Mem. S. M. F. 9/10 (1983). | Zbl 0536.55003
[014] [Ha-St] S. Halperin and J. Stasheff, Obstructions to Homotopy Equivalences, Advances in Math. 32 (1979) 233-279. | Zbl 0408.55009
[015] [He] Hess, K. A Proof of Ganea's Conjecture for Rational Spaces, Topology 30 (1991) 205-214. | Zbl 0717.55014
[016] [Ja] James, I. Lusternik-Schnirelmann Category, Handbook of Algebraic Topology, Elsevier, 1995, pp. 1293-1310. | Zbl 0863.55002
[017] [Je] Jessup, B. Rational L-S Category and a Conjecture of Ganea, J. of Pure and Appl. Alg. 65 (1990) 57-67.
[018] [Lu] Lupton, G. Note on a Conjecture of Stephen Halperin, Springer Lecture Notes in Mathematics, vol. 1440, 1990, pp. 148-163.
[019] [McC] McCleary, J. User's Guide to Spectral Sequences, Mathematics Lecture Series, vol. 12, Publish or Perish, Wilmington, 1985. | Zbl 0577.55001
[020] [Ma] Markl, M. Towards One Conjecture on Collapsing of the Serre Spectral Sequence, Rend. Circ. Mat. Palermo (2) Suppl. 22 (1990) 151-159.
[021] [Me] Meier, W. Rational Universal Fibrations and Flag Manifolds, Math. Ann. 258 (1983) 329-340. | Zbl 0466.55012
[022] [Sh-Te] H. Shiga and M. Tezuka, Rational Fibrations, Homogeneous Spaces with Positive Euler Characteristic and Jacobians, Ann. Inst. Fourier 37 (1987) 81-106. | Zbl 0608.55006
[023] [Ta] Tanré, D. Homotopie Rationnelle: Modèles de Chen, Quillen, Sullivan, Springer Lecture Notes in Mathematics, vol. 1025, 1983.
[024] [Th1] Thomas, J.-C. Rational Homotopy of Serre Fibrations, Ann. Inst. Fourier 31 (1981) 71-90. | Zbl 0446.55009
[025] [Th2] Thomas, J.-C. Eilenberg-Moore Models for Fibrations, Transactions A. M. S. 274 (1982) 203-225. | Zbl 0504.55006
[026] [Vi] Vigué, M. Réalisation de Morphismes Donnés en Cohomologie et Suite Spectrale d'Eilenberg-Moore, Transactions A. M. S. 265 (1981) 447-484. | Zbl 0474.55009