Topological types of fewnomials
Coste, Michel
Banach Center Publications, Tome 43 (1998), p. 81-92 / Harvested from The Polish Digital Mathematics Library
Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:208895
@article{bwmeta1.element.bwnjournal-article-bcpv44i1p81bwm,
     author = {Coste, Michel},
     title = {Topological types of fewnomials},
     journal = {Banach Center Publications},
     volume = {43},
     year = {1998},
     pages = {81-92},
     zbl = {0932.12001},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv44i1p81bwm}
}
Coste, Michel. Topological types of fewnomials. Banach Center Publications, Tome 43 (1998) pp. 81-92. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv44i1p81bwm/

[000] [1] R. Benedetti, J.-J. Risler, Real Algebraic and Semi-algebraic Sets, Hermann, Paris, 1990. | Zbl 0694.14006

[001] [2] R. Benedetti, M. Shiota, Finiteness of semialgebraic types of polynomial functions, Math. Z. 208 (1991), 589-596. | Zbl 0744.14034

[002] [3] J. Bochnak, M. Coste, M.-F. Roy, Géométrie algébrique réelle, Ergeb. Math. Grenzgeb. (3) 12, Springer, Berlin, 1987. | Zbl 0633.14016

[003] [4] M. Coste, M. Reguiat, Trivialités en famille, in: Real Algebraic Geometry, M. Coste et al. (eds.), Lecture Notes in Math. 1524, Springer, Berlin, 1992, 193-204.

[004] [5] L. van den Dries, o-minimal structures, in: Logic: from Foundations to Applications (Conference Proceedings), W. Hodges et al. (eds.), Oxford University Press, New York, 1996, 137-185.

[005] [6] L. van den Dries, Tame Topology and o-minimal Structures, London Math. Soc. Lecture Note Ser. 248, Cambridge Univ. Press, Cambridge, 1998. | Zbl 0953.03045

[006] [7] L. van den Dries, A. Macintyre, D. Marker, The elementary theory of restricted analytic fields with exponentiation, Ann. of Math. (2) 140 (1994), 183-205. | Zbl 0837.12006

[007] [8] L. van den Dries, C. Miller, Geometric categories and o-minimal structures, Duke Math. J. 84 (1996), 497-540. | Zbl 0889.03025

[008] [9] T. Fukuda, Types topologiques des polynômes, Inst. Hautes Études Sci. Publ. Math. 46 (1976), 87-106. | Zbl 0341.57019

[009] [10] R. M. Hardt, Triangulation of subanalytic sets and proper light subanalytic maps, Invent. Math. 38 (1977), 207-217. | Zbl 0331.32006

[010] [11] A. Khovanskii, Fewnomials, Transl. Math. Monogr. 88, Amer. Math. Soc., Providence, 1991.

[011] [12] J. Knight, A. Pillay, C. Steinhorn, Definable sets in o-minimal structures II, Trans. Amer. Math. Soc. 295 (1986), 593-605. | Zbl 0662.03024

[012] [13] T. L. Loi, Thom stratifications for functions definable in o-minimal structures on (R,+,·), C. R. Acad. Sci. Paris Sér. I Math. 324 (1997), 1391-1394.

[013] [14] A. Pillay, Sheaves of continuous definable functions, J. Symbolic Logic 53 (1988), 1165-1169. | Zbl 0683.03018

[014] [15] A. Pillay, C. Steinhorn, Definable sets in ordered structures I, Trans. Amer. Math. Soc. 295 (1986), 565-592. | Zbl 0662.03023

[015] [16] M. Shiota, Piecewise linearization of subanalytic functions II, in: Real Analytic and Algebraic Geometry, M. Galbiati and A. Tognoli (eds.), Lecture Notes in Math. 1420, Springer, Berlin, 1990, 247-307.

[016] [17] M. Shiota, Geometry of Subanalytic and Semialgebraic Sets, Progr. Math. 150, Birkhäuser, Boston, 1997. | Zbl 0889.32006

[017] [18] P. Speisseger, Fiberwise properties of definable sets and functions in o-minimal structures, Manuscripta Math. 86 (1995), 283-291.

[018] [19] A. Wilkie, Model completeness results for expansion of the real field by restricted Pfaffian functions and the exponential function, J. Amer. Math. Soc. 9 (1996), 1051-1094. | Zbl 0892.03013