On symmetric semialgebraic sets and orbit spaces
Bröcker, Ludwig
Banach Center Publications, Tome 43 (1998), p. 37-50 / Harvested from The Polish Digital Mathematics Library

For a symmetric (= invariant under the action of a compact Lie group G) semialgebraic basic set C, described by s polynomial inequalities, we show, that C can also be written by s + 1 G-invariant polynomials. We also describe orbit spaces for the action of G by a number of inequalities only depending on the structure of G.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:208892
@article{bwmeta1.element.bwnjournal-article-bcpv44i1p37bwm,
     author = {Br\"ocker, Ludwig},
     title = {On symmetric semialgebraic sets and orbit spaces},
     journal = {Banach Center Publications},
     volume = {43},
     year = {1998},
     pages = {37-50},
     zbl = {0917.14030},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv44i1p37bwm}
}
Bröcker, Ludwig. On symmetric semialgebraic sets and orbit spaces. Banach Center Publications, Tome 43 (1998) pp. 37-50. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv44i1p37bwm/

[000] [A-B-R] C. Andradas, L. Bröcker, J. Ruiz, Constructible Sets in Real Geometry, Ergeb. Math. Grenzgeb. (3) 33, Springer, Berlin, 1996. | Zbl 0873.14044

[001] [Be1] E. Becker, Hereditarily-Pythagorean Fields and Orderings of Higher Level, Monografias de Matemática 29, Instituto de Matématica Pura et Aplicada, Rio de Janeiro, 1978.

[002] [Be2] E. Becker, On the real spectrum of a ring and its applications to semi-algebraic geometry, Bull. Amer. Math. Soc. (N.S.) 15 (1986), 19-60.

[003] [B-C-R] J. Bochnak, M. Coste, M.-F. Roy, Géométrie algébrique réelle, Ergeb. Math. Grenzgeb. (3) 12, Springer, Berlin, 1987. | Zbl 0633.14016

[004] [B] L. Bröcker, On basic semialgebraic sets, Exposition. Math. 9 (1991), 289-334. | Zbl 0783.14035

[005] [DM-I] F. De Meyer, E. Ingraham, Separable Algebras over Commutative Rings, Lecture Notes in Math. 181, Springer, Berlin, 1971. | Zbl 0215.36602

[006] [Di-Dr] J. Diller, A. Dress, Zur Galoistheorie pythagoreischer Körper, Arch. Math. (Basel) 16 (1965), 148-152.

[007] [Kn-Schei] M. Knebusch, C. Scheiderer, Einführung in die reelle Algebra, Vieweg, Braunschweig, 1989.

[008] [Kr] H. Kraft, Geometrische Methoden in der Invariantentheorie, Aspects of Math. D1, Vieweg, Braunschweig, 1985.

[009] [Lu] D. Luna, Slices étales, in: Sur les groupes algébriques, Bull. Soc. Math. France, Mémoire 33, Paris, 1973, 81-105. | Zbl 0286.14014

[010] [Mar] M. Marshall, Minimal generation of basic sets in the real spectrum of a commutative ring, in: Recent Advances in Real Algebraic Geometry and Quadratic Forms, Contemp. Math. 155, Amer. Math. Soc., Providence, 1994, 207-219. | Zbl 0811.14045

[011] [Pr] A. Prestel, Lectures on Formally Real Fields, Lecture Notes in Math. 1093, Springer, Berlin, 1984. | Zbl 0548.12011

[012] [Pro-Schw] C. Procesi, G. Schwarz, Inequalities defining orbit spaces, Invent. Math. 81 (1985), 539-554. | Zbl 0578.14010

[013] [Schei1] C. Scheiderer, Stability index of real varieties, Invent. Math. 97 (1989), 467-483. | Zbl 0715.14049

[014] [Schei2] C. Scheiderer, Spaces of orderings of fields under finite extensions, Manuscripta Math. 72 (1991), 27-47. | Zbl 0733.12003

[015] [Schw] G. Schwarz, The topology of algebraic quotients, in: Topological Methods in Algebraic Transformation Groups, Progr. Math. 80, Birkhäuser, Boston, 1989, 135-152.

[016] [Slo-Kno] P. Slodowy, Der Scheibensatz für algebraische Transformationsgruppen, mit einem Anhang von F. Knop, in: Algebraische Transformationsgruppen und Invariantentheorie, DMV Sem. 13, Birkhäuser, Basel, 1989, 89-114.

[017] [Weyl] H. Weyl, The Classical Groups, 2nd ed., Princeton University Press, 1946. | Zbl 1024.20502