The paper establishes the basic algebraic theory for the Gevrey rings. We prove the Hensel lemma, the Artin approximation theorem and the Weierstrass-Hironaka division theorem for them. We introduce a family of norms and we look at them as a family of analytic functions defined on some semialgebraic sets. This allows us to study the analytic and algebraic properties of this rings.
@article{bwmeta1.element.bwnjournal-article-bcpv44i1p277bwm, author = {Zurro, Maria-Angeles}, title = {On the rings of formal solutions of polynomial differential equations}, journal = {Banach Center Publications}, volume = {43}, year = {1998}, pages = {277-292}, zbl = {0953.32004}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv44i1p277bwm} }
Zurro, Maria-Angeles. On the rings of formal solutions of polynomial differential equations. Banach Center Publications, Tome 43 (1998) pp. 277-292. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv44i1p277bwm/
[000] [ADM] G. R. Allan, H. G. Dale, J. P. McClure Pseudo-Banach algebras Studia Math. 40 (1971), 55-69
[001] [AHV] J. M. Aroca, H. Hironaka, J. L. Vicente The Theory of the Maximal Contact Memorias de Matemática del Instituto 'Jorge Juan' 29, Madrid, 1975
[002] [BR] R. Benedetti, J. J. Risler Real Algebraic and Semi-algebraic Sets Actualités Math., Hermann, Paris, 1990
[003] [B] J. W. Brewer Power Series over Commutative Rings Lecture Notes in Pure and Appl. Math. 64, Marcel Dekker, New York, 1981
[004] [Ca] J. Cano On the series defined by differential equations with an extension of the Puiseux polygon construction to this series Analysis 13 (1993), 103-119 | Zbl 0793.34009
[005] [CC1] J. Chaumat, A. M. Chollet Sur le théorème de division de Weierstrass Studia Math. 116 (1995), 59-84
[006] [CC2] J. Chaumat, A. M. Chollet Théorème de preparation dans les classes ultradifferentiables C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), 1305-1310
[007] [Co] P. M. Cohn Puiseux's theorem revisited J. Pure Appl. Algebra 31 (1984), 1-4
[008] [G] M. Gevrey Sur la nature analytique des solutions des équations aux dérivées partielles Ann. Sci. École Norm. Sup. (3) 25 (1918), 129-190 | Zbl 46.0721.01
[009] [H] H. Hironaka Idealistic exponents of singularity in: Algebraic Geometry, John Hopkins Univ. Press, Baltimore, 1977, 52-125
[010] [Mi] E. Maillet Sur les séries divergentes et les équations differentielles Ann. Sci. École Norm. Sup. 3 (1903), 487-518
[011] [Ml] B. Malgrange Sur le théorème de Maillet Asymptot. Anal. 2 (1989), 1-4
[012] [M] H. Matsumura Commutative Algebra Math. Lecture Note Ser. 56, Benjamin/Cumming Publishing Co., Reading, 1980
[013] [N] M. Nagata Local Rings Robert E. Krieger Publishing Co., Huntington, 1975
[014] [O] S. Ouchi Formal solutions with Gevrey type estimates of nonlinear partial differential equations J. Math. Sci. Univ. Tokyo 1 (1994), 205-237
[015] [R] C. Rotthaus On the approximation theory of excellent rings Invent. Math. 88 (1987), 39-63
[016] [T] J. Cl. Tougeron Sur les ensembles semi-analytiques avec conditions Gevrey au bord Ann. Sci. École Norm. Sup. (4) 27 (1994), 173-208
[017] [Z1] M. A. Zurro Le théorème de division pour les séries Gevrey à plusieurs variables Preprint, University of Valladolid, Spain, 1992
[018] [Z2] M. A. Zurro The Abhyankar Jung theorem revisited J. Pure Appl. Algebra 90 (1993), 257-282
[019] [Z3] M. A. Zurro Series y funciones Gevrey en varias variables Ph.D. Thesis, University of Valladolid, Spain, 1994
[020] [Z4] M. A. Zurro Summability 'au plus petit terme' Studia Math. 113 (1995), 197-198