Let Ω be a bounded pseudoconvex domain in with boundary and let X be a complete intersection submanifold of Ω, defined by holomorphic functions (1 ≤ p ≤ n-1) smooth up to ∂Ω. We give sufficient conditions ensuring that a function f holomorphic in X (resp. in Ω, vanishing on X), and smooth up to the boundary, extends to a function g holomorphic in Ω and belonging to a given strongly non-quasianalytic Carleman class in (resp. satisfies with holomorphic in Ω and -regular in ). The essential assumption is that f and belong to some (maybe smaller) Carleman class , where the sequences and M are precisely related by geometric conditions on X and Ω.
@article{bwmeta1.element.bwnjournal-article-bcpv44i1p233bwm, author = {Thilliez, Vincent}, title = {Division et extension dans des classes de Carleman de fonctions holomorphes}, journal = {Banach Center Publications}, volume = {43}, year = {1998}, pages = {233-246}, zbl = {0942.32011}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv44i1p233bwm} }
Thilliez, Vincent. Division et extension dans des classes de Carleman de fonctions holomorphes. Banach Center Publications, Tome 43 (1998) pp. 233-246. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv44i1p233bwm/
[000] [A1] E. Amar, Cohomologie complexe et applications, J. London Math. Soc. (2) 29 (1984), 127-140.
[001] [A2] E. Amar, Non-division dans , Math. Z. 188 (1985), 493-511.
[002] [DBT] P. de Bartolomeis G. Tomassini, Finitely generated ideals in , Adv. in Math. 46 (1982), 162-170. | Zbl 0499.32012
[003] [BBMT] J. Bonet, R. W. Braun, R. Meise & B. A. Taylor, Whitney's extension theorem for nonquasianalytic functions, Studia Math. 99 (1991), 156-184. | Zbl 0738.46009
[004] [B] J. Bruna, An extension theorem of Whitney type for non quasi-analytic classes of functions, J. London Math. Soc. (2) 22 (1980), 495-505. | Zbl 0419.26010
[005] [CC1] J. Chaumat & A.-M. Chollet, Théorème de Whitney dans des classes ultradifférentiables, C. R. Acad. Sci. Paris Sér. I Math. 315 (1992), 901-906.
[006] [CC2] J. Chaumat A.-M. Chollet, Noyaux pour résoudre l’équation dans des classes ultradifférentiables sur des compacts irréguliers de , in: Several Complex Variables (Stockholm 1987/1988), Math. Notes 38, Princeton Univ. Press, Princeton, 1993, 205-226.
[007] [D] E. M. Dynkin, Pseudoanalytic extension of smooth functions. The uniform scale, Amer. Math. Soc. Transl. 115 (1980), 33-58.
[008] [GS] R. Gay A. Sebbar, Division et extension dans l’algèbre d’un ouvert pseudoconvexe à bord lisse de , Math. Z. 189 (1985), 421-447. | Zbl 0547.32009
[009] [G] R. C. Gunning, Introduction to Holomorphic Functions of Several Variables, vol. III: Homological Theory, Wadsworth & Brooks/Cole, Monterey, 1990. | Zbl 0699.32001
[010] [M] B. Malgrange, Ideals of Differentiable Functions, Oxford University Press, Bombay, 1966. | Zbl 0177.17902
[011] [N] A. Nagel, On algebras of holomorphic functions with boundary values, Duke Math. J. 41 (1974), 527-535. | Zbl 0291.32023
[012] [Th1] V. Thilliez, Prolongement dans des classes ultradifférentiables et propriétés de régularité des compacts de , Ann. Polon. Math. 63 (1996), 71-88.
[013] [Th2] V. Thilliez, Sur les fonctions composées ultradifférentiables, J. Math. Pures Appl. (9) 76 (1997), 499-524.