Felix Klein's paper on real flexes vindicated
Ronga, Felice
Banach Center Publications, Tome 43 (1998), p. 195-210 / Harvested from The Polish Digital Mathematics Library

In a paper written in 1876 [4], Felix Klein gave a formula relating the number of real flexes of a generic real plane projective curve to the number of real bitangents at non-real points and the degree, which shows in particular that the number of real flexes cannot exceed one third of the total number of flexes. We show that Klein's arguments can be made rigorous using a little of the theory of singularities of maps, justifying in particular his resort to explicit examples.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:208883
@article{bwmeta1.element.bwnjournal-article-bcpv44i1p195bwm,
     author = {Ronga, Felice},
     title = {Felix Klein's paper on real flexes vindicated},
     journal = {Banach Center Publications},
     volume = {43},
     year = {1998},
     pages = {195-210},
     zbl = {0917.14027},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv44i1p195bwm}
}
Ronga, Felice. Felix Klein's paper on real flexes vindicated. Banach Center Publications, Tome 43 (1998) pp. 195-210. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv44i1p195bwm/

[000] [1] S. Akbulut (ed.), Real Algebraic Geometry and Topology, Contemp. Math. 182, Amer. Math. Soc., Providence, 1996.

[001] [2] R. Benedetti and R. Silhol, Spin and Pin- structures, immersed and embedded surfaces and a result of B. Segre on real cubic surfaces, Topology 34 (1995), 651-678. | Zbl 0996.57519

[002] [3] M. Golubitsky and V. Guillemin, Stable Mappings and their Singularities, Springer, New York-Heidelberg 1973. | Zbl 0294.58004

[003] [4] F. Klein, Eine neue Relation zwischen den Singularitäten einer algebraischen Curve, Math. Ann. 10 (1876), 199-209.

[004] [5] I. R. Porteous, Simple Singularities of Maps, preprint, Columbia Univ., 1962, reprinted in: Proc. of the Liverpool Singularities Symp., Lecture Notes in Math. 192, Springer, Berlin, 1971, 217-236.

[005] [6] F. Sottile, Enumerative Geometry for real Varieties, to appear.

[006] [7] R. Thom, Stabilité structurelle et morphogénèse, W. A. Benjamin, Reading, 1972.

[007] [8] O. Ya. Viro, Some integral calculus based on Euler characteristic, in: Topology and Geometry - Rohlin Seminar, Lecture Notes in Math. 1346, Springer, Berlin, 1988.

[008] [9] C. T. C. Wall, Duality of real projective plane curves: Klein's equation, Topology 35 (1996), 355-362. | Zbl 0894.14013

[009] [10] H. G. Zeuthen, Sur les différentes formes des courbes planes du quatrième ordre, Math. Ann. 7 (1874), 410-432.