We prove that the semialgebraic, algebraic, and algebraic nonsingular points of a definable set in o-minimal structure with analytic cell decomposition are definable. Moreover, the operation of taking semialgebraic points is idempotent and the degree of complexity of semialgebraic points is bounded.
@article{bwmeta1.element.bwnjournal-article-bcpv44i1p189bwm, author = {Pi\k ekosz, Artur}, title = {On semialgebraic points of definable sets}, journal = {Banach Center Publications}, volume = {43}, year = {1998}, pages = {189-193}, zbl = {0920.03045}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv44i1p189bwm} }
Piękosz, Artur. On semialgebraic points of definable sets. Banach Center Publications, Tome 43 (1998) pp. 189-193. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv44i1p189bwm/
[000] [1] J. Bochnak, M. Coste, M.-F. Roy, Géométrie algébrique réelle, Ergeb. Math. Grenzgeb. (3) 12, Springer, Berlin, 1987. | Zbl 0633.14016
[001] [2] L. van den Dries, C. Miller, Geometric categories and o-minimal structures, Duke Math. J. 84 (1996), 497-540. | Zbl 0889.03025
[002] [3] S. Łojasiewicz, Ensembles semi-analytiques, Inst. de Hautes Études Scientifiques, Bures-sur-Yvette, 1965.