On semialgebraic points of definable sets
Piękosz, Artur
Banach Center Publications, Tome 43 (1998), p. 189-193 / Harvested from The Polish Digital Mathematics Library

We prove that the semialgebraic, algebraic, and algebraic nonsingular points of a definable set in o-minimal structure with analytic cell decomposition are definable. Moreover, the operation of taking semialgebraic points is idempotent and the degree of complexity of semialgebraic points is bounded.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:208882
@article{bwmeta1.element.bwnjournal-article-bcpv44i1p189bwm,
     author = {Pi\k ekosz, Artur},
     title = {On semialgebraic points of definable sets},
     journal = {Banach Center Publications},
     volume = {43},
     year = {1998},
     pages = {189-193},
     zbl = {0920.03045},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv44i1p189bwm}
}
Piękosz, Artur. On semialgebraic points of definable sets. Banach Center Publications, Tome 43 (1998) pp. 189-193. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv44i1p189bwm/

[000] [1] J. Bochnak, M. Coste, M.-F. Roy, Géométrie algébrique réelle, Ergeb. Math. Grenzgeb. (3) 12, Springer, Berlin, 1987. | Zbl 0633.14016

[001] [2] L. van den Dries, C. Miller, Geometric categories and o-minimal structures, Duke Math. J. 84 (1996), 497-540. | Zbl 0889.03025

[002] [3] S. Łojasiewicz, Ensembles semi-analytiques, Inst. de Hautes Études Scientifiques, Bures-sur-Yvette, 1965.