On the Euler characteristic of fibres of real polynomial maps
Parusiński, Adam ; Szafraniec, Zbigniew
Banach Center Publications, Tome 43 (1998), p. 175-182 / Harvested from The Polish Digital Mathematics Library

Let Y be a real algebraic subset of m and F:Yn be a polynomial map. We show that there exist real polynomial functions g1,...,gs on n such that the Euler characteristic of fibres of F is the sum of signs of gi.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:208880
@article{bwmeta1.element.bwnjournal-article-bcpv44i1p175bwm,
     author = {Parusi\'nski, Adam and Szafraniec, Zbigniew},
     title = {On the Euler characteristic of fibres of real polynomial maps},
     journal = {Banach Center Publications},
     volume = {43},
     year = {1998},
     pages = {175-182},
     zbl = {0915.14032},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv44i1p175bwm}
}
Parusiński, Adam; Szafraniec, Zbigniew. On the Euler characteristic of fibres of real polynomial maps. Banach Center Publications, Tome 43 (1998) pp. 175-182. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv44i1p175bwm/

[000] [B] E. Becker, Sums of squares and trace forms in real algebraic geometry, in: De la géométrie algébrique réelle (Paris, 1990), Cahiers Sém. Hist. Math. Sér. 2 vol. 1, Université Pierre et Marie Curie, Paris, 1991, 41-57.

[001] [BW] E. Becker, T. Wöermann, On the trace formula for quadratic forms and some applications, in: Recent Advances in Real Algebraic Geometry and Quadratic Forms, Contemp. Math. 155, Amer. Math. Soc., Providence, 1994, 271-291.

[002] [BR] R. Benedetti, J.-J. Risler, Real Algebraic and Semi-algebraic Sets, Actualités Math., Hermann, Paris, 1990. | Zbl 0694.14006

[003] [BCR] J. Bochnak, M. Coste, M.-F. Roy, Géométrie algébrique réelle, Ergeb. Math. Grenzgeb. (3) 12, Springer, Berlin, 1987. | Zbl 0633.14016

[004] [CK] M. Coste, K. Kurdyka, Le discriminant d'un morphisme de variétés algébriques réelles, Topology 37 (1998), 393-400.

[005] [He1] C. Hermite, Remarques sur le théorème de Sturm, C. R. Acad. Sci. Paris 36 (1853), 52-54.

[006] [He2] C. Hermite, Sur l'extension du théorème de M. Sturm à un système d'équations simultanées, Oeuvres de Charles Hermite, Tome 3, ed. E. Picard, Edition Paris, Gauthier-Villars, 1912, 1-34.

[007] [MP] C. McCrory, A. Parusiński, Algebraically constructible functions, Ann. Scient. École Norm. Sup. (4) 30 (1997), 527-552. | Zbl 0913.14018

[008] [MS] A. Mostowski, M. Stark, Elementy algebry wyższej, Państwowe Wydawnictwo Naukowe, Warszawa, 1963 (in Polish); English translation: Introduction to Higher Algebra, Internat. Series of Monographs on Pure and Appl. Math. 37, A Pergamon Press Book, New York, and Państwowe Wydawnictwo Naukowe, Warszawa, 1964.

[009] [PS] A. Parusiński, Z. Szafraniec, Algebraically constructible functions and signs of polynomials, Manuscripta Math. 93 (1997), 443-456. | Zbl 0913.14019

[010] [PRS] P. Pedersen, M.-F. Roy, A. Szpirglas, Counting real zeros in the multivariate case, in: Computational Algebraic Geometry, F. Eyssette, A. Galligo (eds.), Progr. Math. 109, Birkhäuser, Boston, 1993, 203-223. | Zbl 0806.14042

[011] [Syl] J. J. Sylvester, On a theory of syzygetic relations of two rational integral functions, comprising an application to the theory of Sturm's functions, Philos. Trans. Roy. Soc. London 143 (1853).

[012] [V] O. Y. Viro, Some integral calculus based on Euler characteristic, in: Topology and Geometry-Rohlin Seminar, O. Y. Viro (ed.), Lecture Notes in Math. 1346, Springer, Berlin, 1988, 127-138.