It is well-known that the versal deformations of nonsimple singularities depend on moduli. The first step in deeper understanding of this phenomenon is to determine the versal discriminant, which roughly speaking is an obstacle for analytic triviality of an unfolding or deformation along the moduli. The goal of this paper is to describe the versal discriminant of and singularities basing on the fact that the deformations of these singularities may be obtained as blowing ups of certain deformations of singularities.
@article{bwmeta1.element.bwnjournal-article-bcpv44i1p129bwm, author = {Jaworski, Piotr}, title = {On blowing up versal discriminants}, journal = {Banach Center Publications}, volume = {43}, year = {1998}, pages = {129-140}, zbl = {0920.32029}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv44i1p129bwm} }
Jaworski, Piotr. On blowing up versal discriminants. Banach Center Publications, Tome 43 (1998) pp. 129-140. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv44i1p129bwm/
[000] [1] V. I. Arnold, S. M. Guseĭn-Zade and A. N. Varchenko, Singularities of Differentiable Maps, vol. 1, Birkhäuser, Boston, 1985.
[001] [2] J. Damon, On the Pham example and the universal topological stratification of singularities, in: Singularities, Banach Center Publ. 20, PWN-Polish Scientific Publishers, Warszawa, 1988, 161-167. | Zbl 0675.58008
[002] [3] J. Damon, A-equivalence and the equivalence of sections of images and discriminants, in: Singularity Theory and its Applications, Part 1 (Coventry 1988/1989), Lecture Notes in Math. 1492, Springer, Berlin, 1991, 93-121. | Zbl 0822.32005
[003] [4] J. Damon, A. Galligo, Universal topological stratification for the Pham example, Bull. Soc. Math. France 121 (1993), 153-181. | Zbl 0784.32029
[004] [5] R. Hartshorne, Algebraic Geometry, Graduate Texts in Math. 52, Springer, New York, 1977.
[005] [6] P. Jaworski, Decompositions of hypersurface singularities of type , Ann. Polon. Math. 59 (1994), 117-131. | Zbl 0819.32013
[006] [7] P. Jaworski, On the versal discriminant of the singularities, Ann. Polon. Math. 63 (1996), 89-99. | Zbl 0848.32028
[007] [8] E. Looijenga, Semi-universal deformation of a simple elliptic hypersurface singularity, I: Unimodularity, Topology 16 (1977), 257-262. | Zbl 0373.32004
[008] [9] A. du Plessis, C. T. C. Wall, Topological stability, in: Singularities (Lille, 1991), London Math. Soc. Lecture Note Ser. 201, Cambridge Univ. Press, Cambridge, 1994, 351-362.
[009] [10] A. du Plessis, C. T. C. Wall, The Geometry of Topological Stability, London Math. Soc. Monogr. (N.S.) 9, Oxford Sci. Publ., Oxford Univ. Press, New York, 1995. | Zbl 0870.57001
[010] [11] K. Wirthmüller, Universell topologische triviale Deformationen, Ph.D. thesis, University of Regensburg, 1979.