Multiplicity of polynomials on trajectories of polynomial vector fields in C3
Gabrielov, Andrei ; Jean, Frédéric ; Risler, Jean-Jacques
Banach Center Publications, Tome 43 (1998), p. 109-121 / Harvested from The Polish Digital Mathematics Library

Let ξ be a polynomial vector field on n with coefficients of degree d and P be a polynomial of degree p. We are interested in bounding the multiplicity of a zero of a restriction of P to a non-singular trajectory of ξ, when P does not vanish identically on this trajectory. Bounds doubly exponential in terms of n are already known ([9,5,10]). In this paper, we prove that, when n=3, there is a bound of the form p+2p(p+d-1)2. In Control Theory, such a bound can be used to give an estimate of the degree of nonholonomy for a system of polynomial vector fields (this degree expresses the level of Lie-bracketing needed to generate the tangent space at each point).

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:208871
@article{bwmeta1.element.bwnjournal-article-bcpv44i1p109bwm,
     author = {Gabrielov, Andrei and Jean, Fr\'ed\'eric and Risler, Jean-Jacques},
     title = {Multiplicity of polynomials on trajectories of polynomial vector fields in $C^3$
            },
     journal = {Banach Center Publications},
     volume = {43},
     year = {1998},
     pages = {109-121},
     zbl = {0922.32023},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv44i1p109bwm}
}
Gabrielov, Andrei; Jean, Frédéric; Risler, Jean-Jacques. Multiplicity of polynomials on trajectories of polynomial vector fields in $C^3$
            . Banach Center Publications, Tome 43 (1998) pp. 109-121. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv44i1p109bwm/

[000] [1] V. I. Arnol'd, S. M. Guseĭn-Zade and A. N. Varchenko, Singularities of Differentiable Maps, Birkhäuser, Boston, 1985.

[001] [2] A. Bellaïche, The tangent space in sub-Riemannian geometry, in: Sub-Riemannian Geometry, A. Bellaïche and J.-J. Risler (ed.), Progr. Math. 144, Birkhäuser, Basel, 1996, 1-78. | Zbl 0862.53031

[002] [3] W. Fulton, Intersection Theory, Ergeb. Math. Grenzgeb. (3) 2, Springer, Berlin, 1984. | Zbl 0541.14005

[003] [4] A. Gabrielov, J.-M. Lion and R. Moussu, Ordre de contact de courbes intégrales du plan, C. R. Acad. Sci. Paris Sér. I Math. 319 (1994), 219-221.

[004] [5] A. Gabrielov, Multiplicities of zeroes of polynomials on trajectories of polynomial vector fields and bounds on degree of nonholonomy, Math. Res. Lett. 2 (1995), 437-451. | Zbl 0845.32003

[005] [6] A. Gabrielov, Multiplicities of Pfaffian intersections and the Łojasiewicz inequality, Selecta Math. (N. S.) 1 (1995), 113-127. | Zbl 0889.32005

[006] [7] A. Gabrielov, Multiplicity of a Zero of an Analytic Function on a Trajectory of a Vector Field, Preprint, Purdue University, March 1997. | Zbl 0948.32010

[007] [8] E. Kunz, Introduction to Commutative Algebra and Algebraic Geometry, Birkhäuser, Boston, 1985. | Zbl 0563.13001

[008] [9] Y. V. Nesterenko, Estimates for the number of zeros of certain functions, in: New Advances in Transcendence Theory, A. Baker (ed.), Cambridge Univ. Press, Cambridge, 1988, 263-269.

[009] [10] J.-J. Risler, A bound for the degree of nonholonomy in the plane, Theoret. Comput. Sci. 157 (1996), 129-136. | Zbl 0871.93024

[010] [11] P. Samuel, Méthodes d'algèbre abstraite en géométrie algébrique, Ergeb. Math. Grenzgeb. 4, Springer, Berlin, 1967. | Zbl 0146.16901