A family of transformations on the set of all probability measures on the real line is introduced, which makes it possible to define new examples of convolutions. The associated central limit theorems are studied, and examples of the limit measures, related to the classical, free and boolean convolutions, are shown.
@article{bwmeta1.element.bwnjournal-article-bcpv43i1p95bwm, author = {Bo\.zejko, Marek and Wysocza\'nski, Janusz}, title = {New Examples of Convolutions and Non-Commutative Central Limit Theorems}, journal = {Banach Center Publications}, volume = {43}, year = {1998}, pages = {95-103}, zbl = {0936.46050}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv43i1p95bwm} }
Bożejko, Marek; Wysoczański, Janusz. New Examples of Convolutions and Non-Commutative Central Limit Theorems. Banach Center Publications, Tome 43 (1998) pp. 95-103. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv43i1p95bwm/
[000] [AkG] N. I. Akhiezer and I. M. Glazman, Theory of Linear Operators in Hilbert Space, Ungar, New York, 1963.
[001] [BLS] M. Bożejko, M. Leinert and R. Speicher, Convolution and limit theorems for conditionally free random variables, Pacific J. Math. 175, No. 2 (1996), 357-388. | Zbl 0874.60010
[002] [BSp1] M. Bożejko and R. Speicher, Interpolation between bosinic and fermionic relations given by generalized Brownian motions, Math. Z. 222 (1996), 135-160.
[003] [BSp2] M. Bożejko, B. Kümmerer and R. Speicher, q-Gaussian Processes: Non-commutative and Classical Aspects, Comm. Math. Phys. 185 (1997), 129-154.
[004] [Ma] H. Maassen, Addition of Freely Independent Random Variables, J. Funct. Anal. 106 No. 2 (1992), 409-438. | Zbl 0784.46047
[005] [Sp] R. Speicher, Multiplicative functions on the lattice of non-crossing partitions and free convolution, Math. Ann. 298 (1994), 611-628. | Zbl 0791.06010