We consider the classical and quantum dynamics of D0 branes within the Yang-Mills approximation. Using a simple ansatz we show that a classical trajectory exhibits a chaotic motion. Chaotic dynamics in N=2 supersymmetric Yang-Mills theory is also discussed.
@article{bwmeta1.element.bwnjournal-article-bcpv43i1p41bwm, author = {Aref'eva, I. and Medvedev, P. and Rytchkov, O. and Volovich, I.}, title = {Chaos in D0 brane dynamics}, journal = {Banach Center Publications}, volume = {43}, year = {1998}, pages = {41-51}, zbl = {0935.70019}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv43i1p41bwm} }
Aref'eva, I.; Medvedev, P.; Rytchkov, O.; Volovich, I. Chaos in D0 brane dynamics. Banach Center Publications, Tome 43 (1998) pp. 41-51. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv43i1p41bwm/
[000] [1] B. L. Altshuler and L. S. Levitov, cond-mat/9704122.
[001] [2] D. V. Anosov and V. I. Arnold (eds), Dynamical Systems, VINITI, Moscow 1985.
[002] [3] T. Banks, W. Fischler, S. H. Shenker and L. Susskind, M Theory as a Matrix Model: a Conjecture, Phys. Rev. D 55 (1997), 5112, hep-th/9610043.
[003] [4] J. D. Barrow and J. Levin, gr-qc/9706065; J. D. Barrow and M. P. Dabrowski, hep-th/9711041.
[004] [5] G. Z. Baseyan, S. G. Matinyan and G. K. Savvidi, JETP Lett. 29 (1979), 585.
[005] [6] O. Bogidas, M.-J. Giannoni and C. Schmit, Phys. Rev. Lett. 52 (1984), 1.
[006] [7] G. Casati and B. V. Chirikov (eds.), Quantum Chaos: between order and disorder, Cambridge Univ. Press, Cambridge 1995.
[007] [8] L. Casetti, R. Gatto and M. Modugno, hep-th/9707054.
[008] [9] B. V. Chirikov and D. L. Shepelyanskii, JETP Lett. 34 (1981), 164.
[009] [10] U. H. Danielsson, G. Ferretti and B. Sundborg, hep-th/9603081.
[010] [11] B. de Wit, J. Hoppe and H. Nicolai, Nucl. Phys. B 305 (1988), 545.
[011] [12] B. de Wit, M. Luscher and H. Nicolai, Nucl. Phys. B 320 (1989), 135.
[012] [13] R. Dijkgraaf, E. Verlinde and H. Verlinde, 5D Black Holes and Matrix Strings, hep-th/9704018. | Zbl 0925.83056
[013] [14] J.-P. Eckmann and D. Ruelle, Rev. Mod. Phys. 57 (1987), 617.
[014] [15] J. Fröhlich and J. Hoppe, On Zero-Mass Ground States in Super-Membrane Matrix Models, ITH-TH/96-53. | Zbl 0911.46046
[015] [16] D. V. Gal'tsov and M. S. Volkov, Phys. Lett. B 256 (1991), 17.
[016] [17] M.-J. Giannoni, A. Voros and J. Zinn-Justin (eds.), Chaos and Quantum Physics, North-Holland, Amsterdam 1991.
[017] [18] M. C. Gutzwiller, Chaos in Classical and Quantum Mechanics, Springer, Berlin 1990. | Zbl 0727.70029
[018] [19] C. M. Hull and P. K. Townsend, Nucl. Phys. B 438 (1995), 109.
[019] [20] N. Ishibashi, H. Kawai, Y. Kitazawa and A. Tsuchiya, A Large-N Reduced Model as Superstring, hep-th/9612115. | Zbl 0979.81567
[020] [21] G. Jona-Lasinio, C. Presilla and F. Capasso, Phys. Rev. Lett. 68 (1992), 2269.
[021] [22] D. Kabat and P. Pouliot, hep-th/9603127.
[022] [23] T. Kawabe and S. Ohta, Phys. Rev. D 44 (1991), 1274.
[023] [24] M. Lüscher, Nucl. Phys. B 219 (1983), 233.
[024] [25] B. V. Medvedev, Teor. Mat. Phys. 60 (1984), 224; 109 (1996), 406.
[025] [26] K. Nakamura, Quantum Chaos, Cambridge University Press, Cambridge 1995. | Zbl 0900.81040
[026] [27] H. B. Nielsen, H. H. Rugh and S. E. Rugh, chao-dyn/9605013, hep-th/9611128.
[027] [28] E. S. Nikolaevsky and L. N. Shchur, JETP Lett. 36 (1982), 218-220; JETP 58 (1983), 1.
[028] [29] M. Ohya, Complexities and their Applications to Characterization of Chaos, to appear in Intern. J. of Theor. Phys., 1997.
[029] [30] L. Salasnich, Mod. Phys. Lett. A 12 (1997) 1473-1480, quant-ph/9706025.
[030] [31] N. Seiberg and E. Witten, Nucl. Phys. B 426 (1994) 19; B 431 (1994) 484.
[031] [32] B. Simon, Ann. Phys. 146 (1983), 209.
[032] [33] Ya. G. Sinai, Introduction to Ergodic Theory, Fasis, Moscow, 1996.
[033] [34] M. Srednicki, cond-mat/9605127.
[034] [35] L. Susskind, hep-th/9704080.
[035] [36] I. V. Volovich, D-branes, Black Holes and SU(∞) Gauge Theory, hep-th/9608137.
[036] [37] E. Witten, Nucl. Phys. B 443 (1995), 85.
[037] [38] G. M. Zaslavskii, Stochasticity of Dynamical Systems, Nauka, Moscow, 1984. | Zbl 0616.34001