We obtain coupled reaction-diffusion equations for the density and temperature of a dense fluid, starting from a discrete model in which at most one particle can be present at each site. The model is constructed by the methods of statistical dynamics. We verify that the theory obeys the first and second laws of thermodynamics. Some remarks on measurement theory for the position of a particle are offered.
@article{bwmeta1.element.bwnjournal-article-bcpv43i1p381bwm, author = {Streater, R.}, title = {A model of dense fluids}, journal = {Banach Center Publications}, volume = {43}, year = {1998}, pages = {381-393}, zbl = {0923.76021}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv43i1p381bwm} }
Streater, R. A model of dense fluids. Banach Center Publications, Tome 43 (1998) pp. 381-393. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv43i1p381bwm/
[000] [1] S.-i. Amari, Differential Geometric Methods in Statistics, Lecture Notes in Statistics, 28, Springer-Verlag, Berlin, 1985.
[001] [2] R. Balian, Y. Alhassid and H. Reinhardt, Physics Reports 131, 2-146, North Holland (1986).
[002] [3] A. Fick, On Liquid Diffusion, Phil. Mag. 10 (4th series) (1855), 30-35.
[003] [4] H. Hasagawa, Rep. Math. Phys. 33 (1993), 87.
[004] [5] H. Hasagawa, Noncommutative extension of the information geometry, in: Quantum Communication and Measurement, Eds. V. P. Belavkin, O. Hirota, and R. L. Hudson, Plenum Press, New York, (1995); 327.
[005] [6] H. Hasagawa, Rep. Math. Phys. 39 (1997), 49-68.
[006] [7] H. Nagaoka, IEICE Tech. Report 89 (1989), 9.
[007] [8] H. Nagaoka, Differential geometrical aspects of quantum state estimation and relative entropy, in: Quantum Communication and Measurement, Eds. V. P. Belavkin, O. Hirota and R. L. Hudson, Plenum Press, new York (1995), 449. | Zbl 0942.81585
[008] [9] R. F. Streater, Statistical Dynamics, Rep. Math. Phys. 33 (1993), 203-219. | Zbl 0817.60098
[009] [10] R. F. Streater, Convection in a gravitational field, J. Stat. Phys. 77 (1994), 441-448. | Zbl 0837.60098
[010] [11] R. F. Streater, Statistical Dynamics, pp 275, Imperial College Press, 1995. | Zbl 0822.60093
[011] [12] R. F. Streater, Information Geometry and Reduced Quantum Description, Rep. Math. Phys. 38 (1996), 419-436. | Zbl 0888.46053
[012] [13] R. F. Streater, Statistical Dynamics and Information Geometry, in: Geometry and Nature, Eds. H. Nencka and J.-P. Bourguignon, Contemporary Mathematics 203, 117-131, 1997. Amer. Math. Soc. | Zbl 0892.60095
[013] [14] R. F. Streater, A gas of Brownian particles in statistical dynamics, J. Stat. Phys. 88 (1997), 447-469. | Zbl 0939.82026
[014] [15] R. F. Streater, Nonlinear heat equations, to appear in Rep. Math. Phys. | Zbl 0907.60094
[015] [16] R. F. Streater, Dynamics of Brownian particles in a potential, J. Math. Phys. 38(9) (1997), 4570-4575. | Zbl 0887.58063