We review recent results on interface states in quantum statistical mechanics.
@article{bwmeta1.element.bwnjournal-article-bcpv43i1p321bwm, author = {Nachtergaele, Bruno}, title = {Quantum interfaces}, journal = {Banach Center Publications}, volume = {43}, year = {1998}, pages = {321-329}, zbl = {0941.60091}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv43i1p321bwm} }
Nachtergaele, Bruno. Quantum interfaces. Banach Center Publications, Tome 43 (1998) pp. 321-329. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv43i1p321bwm/
[000] [1] C. Borgs, J. Chayes and J. Fröhlich, Dobrushin states for classical spin systems with complex interactions, to appear in J. Stat. Phys. | Zbl 0945.82516
[001] [2] C. Borgs, J. Chayes and J. Fröhlich, Dobrushin states in quantum lattice systems, Commun. Math. Phys. 189 (1997), 591. | Zbl 0888.60093
[002] [3] O. Bratteli, A. Kishimoto and D. Robinson, Ground states of quantum spin systems, Commun. Math. Phys. 64 (1978), 41-48. | Zbl 0399.46052
[003] [4] O. Bratteli and D. W. Robinson, Operator algebras and quantum statistical mechanics, 2 volumes, Springer Verlag-Berlin-Heidelberg-New York, 2nd edition, 1987 and 1996. | Zbl 0905.46046
[004] [5] R. L. Dobrushin, Gibbs states describing the coexistence of phases for a three-dimensional Ising model, Theor. Prob. Appl. 17 (1972), 582. | Zbl 0275.60119
[005] [6] N. Datta, A. Messager and B. Nachtergaele, Rigidity of interfaces in the Falicov-Kimball model, archived as math-ph/9804008. | Zbl 0973.82017
[006] [7] C.-T. Gottstein and R. F. Werner, Ground states of the infinite q-deformed Heisenberg ferromagnet, preprint archived as cond-mat/9501123.
[007] [8] F. C. Alcaraz, S. R. Salinas and W. F. Wreszinski, Anisotropic ferromagnetic quantum domains, Phys. Rev. Lett. 75 (1995), 930.
[008] [9] G. Albertini, V. E. Korepin and A. Schadschneider, XXZ model as an effective Hamiltonian for generalized Hubbard models with broken η-symmetry, J. Phys. A: Math. Gen. 25 (1995), L303-L309.
[009] [10] T. Kennedy and E. H. Lieb, An itinerant electron model with crystalline or magnetic long-range order, Physica 138A (1986), 320-358. | Zbl 1002.82508
[010] [11] L. M. Falicov and J. C. Kimball, Phys. Rev. B 22 (1969), 997.
[011] [12] M. Fannes and R. F. Werner, Boundary conditions for quantum lattice systems, Helv. Phys. Acta 68 (1995), 635-657. | Zbl 0848.60096
[012] [13] T. Matsui, On Ground States of the One-Dimensional Ferromagnetic XXZ Model, Lett. Math. Phys. 37 (1996), 397-403. | Zbl 0855.46048
[013] [14] T. Matsui, On the spectra of kink for ferromagnetic XXZ models, Lett. Math. Phys. 42 (1997), 229. | Zbl 0892.60099
[014] [15] T. Matsui, Translation Symmetry Breaking and Soliton Sectors for Massive Quantum Spin Models in 1+1 Dimensions, Commun. Math. Phys. 189 (1997), 127. | Zbl 0898.46059
[015] [16] A. Messager and S. Miracle-Solé, Low temperature states in the Falicov-Kimball model, Rev. Math. Phys. 8 (1996), 271. | Zbl 0856.60106
[016] [17] T. Koma and B. Nachtergaele, The spectral gap of the ferromagnetic XXZ chain, Lett. Math. Phys. 40 (1997), 1-16. | Zbl 0880.60103
[017] [18] T. Koma and B. Nachtergaele, The complete set of ground states of the ferromagnetic XXZ chains, preprint archived as cond-mat/9709208, to appear in Adv. Theor. Math. Phys. | Zbl 0958.82012
[018] [19] T. Koma and B. Nachtergaele, in preparation.
[019] [20] A. W. Majewski and B. Zegarliński, Quantum Stochastic Dynamics I, Math. Phys. Electronic J. 1, No2 (1995), 37.
[020] [21] A. W. Majewski, R. Olkiewicz and B. Zegarliński, this volume.
[021] [22] J. Propp, private communication.
[022] [23] R. H. Schonmann and S. B. Shlosman, Wulff droplets and the metastable relaxation of kinetic Ising models, archived as mparc # 97-272.
[023] [24] B. Simon, The Statistical Mechanics of Lattice Gases, Vol 1, Princeton University Press, 1993. | Zbl 0804.60093