Positive energy representations for quantum spin models in 1+1 dimensions
Matsui, Taku
Banach Center Publications, Tome 43 (1998), p. 309-320 / Harvested from The Polish Digital Mathematics Library

We present recent results on positive energy representations of quantum spin models.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:208851
@article{bwmeta1.element.bwnjournal-article-bcpv43i1p309bwm,
     author = {Matsui, Taku},
     title = {Positive energy representations for quantum spin models in 1+1 dimensions},
     journal = {Banach Center Publications},
     volume = {43},
     year = {1998},
     pages = {309-320},
     zbl = {0932.82006},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv43i1p309bwm}
}
Matsui, Taku. Positive energy representations for quantum spin models in 1+1 dimensions. Banach Center Publications, Tome 43 (1998) pp. 309-320. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv43i1p309bwm/

[000] [1] I. Affleck, T. Kennedy, E. H. Lieb and H. Tasaki, Valence Bond Ground States in Isotropic Quantum Antiferromagnets, Commun. Math. Phys. 115 (1988), 477-528.

[001] [2] S. R. Alcaraz, R. S. Salinas and W. F. Wreszinski, Anisotropic ferromagnetic quantum domain, Phys. Rev. Lett. 75 (1995), 930-933.

[002] [3] H. Araki, Soliton sector of the XY-model, International Journal of Modern Physics B 10, Nos 13 & 14 (1996), 1685-1693. | Zbl 1229.82019

[003] [4] H. Araki and T. Matsui, Ground states of the XY model, Commun. Math. Phys. 101 (1985), 213-245. | Zbl 0581.46058

[004] [5] O. Bratteli, A. Kishimoto and D. Robinson, Ground states of quantum spin systems, Commun. Math. Phys. 64 (1978), 41-48. | Zbl 0399.46052

[005] [6] O. Bratteli and D. Robinson, Operator algebras and quantum statistical mechanics II, Springer, 1997. | Zbl 0903.46066

[006] [7] M. Fannes, B. Nachtergaele and R. Werner, Finitely Correlated States on Quantum Spin Chains, Commun. Math. Phys. 144 (1992), 443-490. | Zbl 0755.46039

[007] [8] J. Frölich, New superselection sectors (soliton states) in two dimensional Bose quantum field theory, Commun. Math. Phys. 47 (1976), 269-310.

[008] [9] C. T. Gottstein and R. Werner, Zero-energy states of the ferromagnetic XXZ chain, preprint, Osnabrück 1995.

[009] [10] C. T. Gottstein and R. Werner, Zero-energy ground states of quantum lattice systems, preprint, Osnabrück 1995.

[010] [11] R. Haag, Local Quantum Physics, Springer-Verlag, 1992. | Zbl 0777.46037

[011] [12] T. Koma and B. Nachtergaele, The spectral gap of the ferromagnetic XXZ chain, Lett. Math. Phys. 40 (1997), 1-16. | Zbl 0880.60103

[012] [13] T. Koma and B. Nachtergaele, preprint.

[013] [14] T. Matsui, Translationally Symmetry Breaking and Soliton Sectors for Massive Quantum Spin Models in 1+1 Dimensions, Commun. Math. Phys. 189 (1997), 127-144. | Zbl 0898.46059

[014] [15] T. Matsui, On the spectrum of the kink of the ferromagnetic XXZ model, to appear in Lett. Math. Phys. | Zbl 0892.60099

[015] [16] T. Matsui, On ground states of the one-dimensional ferromagnetic XXZ model, Lett. Math. Phys. 37 (1996), 397-403. | Zbl 0855.46048

[016] [17] D. Schlingemann, On algebraic theory of soliton and anti-soliton sectors, Rev. Math. Phys. 8 (1996), 301-326. | Zbl 0862.46049