Quantum symmetries in noncommutative C*-systems
Marciniak, Marcin
Banach Center Publications, Tome 43 (1998), p. 297-307 / Harvested from The Polish Digital Mathematics Library

We introduce the notion of a completely quantum C*-system (A,G,α), i.e. a C*-algebra A with an action α of a compact quantum group G. Spectral properties of completely quantum systems are investigated. In particular, it is shown that G-finite elements form the dense *-subalgebra of A. Furthermore, properties of ergodic systems are studied. We prove that there exists a unique α-invariant state ω on A. Its properties are described by a family of modular operators σzz acting on . It turns out that ω is a KMS state provided that ω is faithful.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:208850
@article{bwmeta1.element.bwnjournal-article-bcpv43i1p297bwm,
     author = {Marciniak, Marcin},
     title = {Quantum symmetries in noncommutative C*-systems},
     journal = {Banach Center Publications},
     volume = {43},
     year = {1998},
     pages = {297-307},
     zbl = {0927.46051},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv43i1p297bwm}
}
Marciniak, Marcin. Quantum symmetries in noncommutative C*-systems. Banach Center Publications, Tome 43 (1998) pp. 297-307. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv43i1p297bwm/

[000] [1] D. Bernard and G. Felder, Quantum group symmetries in two-dimensional lattice quantum field theory, Nucl. Phys. B 365 (1991), 98-120.

[001] [2] M. Fannes, B. Nachtergaele and R. F. Werner, Quantum Spin Chains with Quantum Group Symmetry, Commun. Math. Phys. 174 (1996), 477-507. | Zbl 0845.46043

[002] [3] K. Fredenhagen, K.-H. Rehren and B. Schroer, Superselection Sectors with Braid Group Statistics and Exchange Algebras I, Commun. Math. Phys. 125 (1989), 201-226, II, Rev. Math. Phys. - Special Issue (1992), 113-157. | Zbl 0682.46051

[003] [4] R. Haag, Local Quantum Physics, Springer-Verlag, Berlin Heidelberg 1992. | Zbl 0777.46037

[004] [5] R. Hοeg-Krohn, M. B. Landstad and E. Stοrmer, Compact ergodic groups of automorphisms, Ann. Math. 114 (1981), 75-86. | Zbl 0472.46046

[005] [6] G. Mack and V. Schomerus, Quasi Hopf quantum symmetry in quantum theory, Nucl. Phys. B 370 (1992), 185-230. | Zbl 1221.81108

[006] [7] M. Marciniak, Actions of compact quantum groups on C*-algebras, Proc. Amer. Math. Soc. 126 (1998), 607-616. | Zbl 0885.22009

[007] [8] M. Marciniak, Quantum symmetries in noncommutative dynamical systems, Gdańsk University, 1997 (in Polish).

[008] [9] G. K. Pedersen, C*-Algebras and Their Automorphism Groups, Academic Press, London 1979. | Zbl 0416.46043

[009] [10] P. Podleś, Symmetries of Quantum Spaces. Subgroups and Quotient Spaces of Quantum SU(2) and SO(3) Groups, Commun. Math. Phys. 170 (1995), 1-20. | Zbl 0853.46074

[010] [11] M. E. Sweedler, Hopf algebras, W.A. Benjamin, Inc., New York 1969.

[011] [12] M. Takesaki, Theory of operator algebras, Springer Verlag, Berlin Heidelberg New York 1979.

[012] [13] S. L. Woronowicz, Compact Matrix Pseudogroups, Commun. Math. Phys. 111 (1987), 613-665. | Zbl 0627.58034

[013] [14] S. L. Woronowicz, Compact quantum groups, preprint 1994.