Quantum geometry of noncommutative Bernoulli shifts
Alicki, Robert
Banach Center Publications, Tome 43 (1998), p. 25-29 / Harvested from The Polish Digital Mathematics Library

We construct an example of a noncommutative dynamical system defined over a two dimensional noncommutative differential manifold with two positive Lyapunov exponents equal to ln d each. This dynamical system is isomorphic to the quantum Bernoulli shift on the half-chain with the quantum dynamical entropy equal to 2 ln d. This result can be interpreted as a noncommutative analog of the isomorphism between the classical one-sided Bernoulli shift and the expanding map of the circle and moreover as an example of the noncommutative Pesin theorem.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:208847
@article{bwmeta1.element.bwnjournal-article-bcpv43i1p25bwm,
     author = {Alicki, Robert},
     title = {Quantum geometry of noncommutative Bernoulli shifts},
     journal = {Banach Center Publications},
     volume = {43},
     year = {1998},
     pages = {25-29},
     zbl = {0984.46045},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv43i1p25bwm}
}
Alicki, Robert. Quantum geometry of noncommutative Bernoulli shifts. Banach Center Publications, Tome 43 (1998) pp. 25-29. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv43i1p25bwm/

[000] [1]] J. Andries and M. De Cock, Dynamical entropy of a non-commutative version of the phase doubling, this volume.

[001] [2] J. Andries, M. Fannes, P. Tuyls, and R. Alicki, The dynamical entropy of the quantum Arnold cat map, Lett. Math. Phys. 35 (1995), 375-383. | Zbl 0842.58054

[002] [3] R. Alicki and M. Fannes, Defining quantum dynamical entropy, Lett. Math. Phys. 32 (1994), 75-82. | Zbl 0814.46055

[003] [4] R. Alicki, J. Andries, M. Fannes and P. Tuyls, An algebraic approach to the Kolmogorov-Sinai entropy, Rev. Math. Phys. 8 (1996), 167-184. | Zbl 0884.46039

[004] [5] A. Connes, Non-commutative Geometry, Academic Press, New York, 1994.

[005] [6] A. Connes, H. Narnhofer, and W. Thirring, Dynamical entropy of C*-algebras and von Neumann algebras, Commun. Math. Phys. 112 (1987) 691-719. | Zbl 0637.46073

[006] [7] I. P. Cornfeld, S. V. Fomin, and Ya. G. Sinai, Ergodic theory, Springer, Berlin, 1982. | Zbl 0493.28007

[007] [8] G. Emch, H. Narnhofer, W. Thirring, and G.L. Sewell, Anosov actions on non-commutative algebras, J. Math. Phys. 35, (1994) 5582-5599. | Zbl 0817.58028

[008] [9] T. Hudetz, Quantum dynamical entropy revised, this volume.

[009] [10] G. Lindblad, Dynamical Entropy for Quantum Systems, in: Quantum Probability and Applications, Vol.III, L. Accardi and W. von Waldenfels (eds.), Springer LNM 1303, Berlin, 1988, 183-191.

[010] [11] W. A. Majewski and M. Kuna, On quantum characteristic exponents, J. Math. Phys. 34, (1993) 5007-5015. | Zbl 0783.58031

[011] [12] P. Tuyls, Towards Quantum Kolmogorov-Sinai Entropy, Ph.D. Thesis, Leuven, 1997.

[012] [13] D. Voiculescu, Dynamical approximation entropies and topological entropy in operator algebras, Commun. Math. Phys. 144, (1992) 443-490.