From a sequence of m-fold tensor product constructions that give a hierarchy of freeness indexed by natural numbers m we examine in detail the first non-trivial case corresponding to m=2 which we call 2-freeness. We show that in this case the constructed tensor product of states agrees with the conditionally free product for correlations of order ≤ 4. We also show how to associate with 2-freeness a cocommutative *-bialgebra.
@article{bwmeta1.element.bwnjournal-article-bcpv43i1p259bwm, author = {Lenczewski, R.}, title = {Tensor product construction of 2-freeness}, journal = {Banach Center Publications}, volume = {43}, year = {1998}, pages = {259-272}, zbl = {0943.46035}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv43i1p259bwm} }
Lenczewski, R. Tensor product construction of 2-freeness. Banach Center Publications, Tome 43 (1998) pp. 259-272. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv43i1p259bwm/
[000] [B-L-S] M. Bożejko, M. Leinert and R. Speicher, Convolution and limit theorems for conditionally free random variables, Pac. J. Math. 175, No.2 (1996), 357-388. | Zbl 0874.60010
[001] [Len1] R. Lenczewski, On sums of q-independent quantum variables, Comm. Math. Phys. 154 (1993), 127-134. | Zbl 0788.60016
[002] [Len2] R. Lenczewski, Addition of independent variables in quantum groups, Rev. Math. Phys. 6 (1994), 135-147. | Zbl 0793.60116
[003] [Sch] M. Schürmann, White Noise on Bialgebras, Springer-Verlag, Berlin, 1993. | Zbl 0773.60100
[004] [V-D-N] D. V. Voiculescu, K. J. Dykema and A. Nica, Free Random Variables, CRM Monograph Series, AMS, Providence, 1992.