We define a new quantum dynamical entropy for a C*-algebra automorphism with an invariant state (and for an appropriate 'approximating' subalgebra), which entropy is a 'hybrid' of the two alternative definitions by Connes, Narnhofer and Thirring resp. by Alicki and Fannes (and earlier, Lindblad). We report on this entropy's properties and on three examples.
@article{bwmeta1.element.bwnjournal-article-bcpv43i1p241bwm, author = {Hudetz, Thomas}, title = {Quantum dynamical entropy revisited}, journal = {Banach Center Publications}, volume = {43}, year = {1998}, pages = {241-251}, zbl = {0927.46049}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv43i1p241bwm} }
Hudetz, Thomas. Quantum dynamical entropy revisited. Banach Center Publications, Tome 43 (1998) pp. 241-251. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv43i1p241bwm/
[000] [1] R. Alicki and M. Fannes, Defining Quantum Dynamical Entropy, Lett. Math. Phys. 32 (1994), 75-82. | Zbl 0814.46055
[001] [2] R. Alicki, J. Andries, M. Fannes and P. Tuyls, An Algebraic Approach to the Kolmogorov-Sinai Entropy, Rev. Math. Phys. 8 (2) (1996), 167-184. | Zbl 0884.46039
[002] [3] R. Alicki, D. Makowiec, W. Miklaszewski, Quantum Chaos in Terms of Entropy for the Periodically Kicked Top, Phys. Rev. Lett. 77 (1996), 838-841.
[003] [4] R. Alicki and H. Narnhofer, Comparison of Dynamical Entropies for the Noncommutative Shifts, Lett. Math. Phys. 33 (1995), 241-247. | Zbl 0836.46059
[004] [5] J. Andries, M. Fannes, P. Tuyls and R. Alicki, The Dynamical Entropy of the Quantum Arnold Cat Map, Lett. Math. Phys. 35 (1995), 375-383. | Zbl 0842.58054
[005] [6] F. Benatti, T. Hudetz and A. Knauf, Quantum Chaos and Dynamical Entropy, preprint no. 268, SFB 288, TU Berlin, June 1997 (submitted). | Zbl 0927.37008
[006] [7] O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics, Vol. I / Vol. II (2nd ed.), Springer, New York/Heidelberg/Berlin, 1981/1987. | Zbl 0463.46052
[007] [8] A. Connes, H. Narnhofer and W. Thirring, Dynamical Entropy of C* Algebras and von Neumann Algebras, Commun. Math. Phys. 112 (1987), 691-719. | Zbl 0637.46073
[008] [9] A. Connes and E. Størmer, Entropy for Automorphisms of von Neumann Algebras, Acta Math. 134 (1975), 289-306. | Zbl 0326.46032
[009] [10] V. Ya. Golodets and E. Størmer: Entropy of C*-Dynamical Systems Defined by Bitstreams, preprint no. 18, Dept. of Mathematics, Univ. of Oslo, August 1996.
[010] [11] T. Hudetz, A `Hybrid' State-Dependent Dynamical Entropy for C*-Algebra Automorphisms, preprint, Univ. of Vienna (to be submitted). | Zbl 0927.46049
[011] [12] A. N. Kolmogorov, A New Metric Invariant of Transitive Systems and Automorphisms of Lebesgue Spaces, Dokl. Akad. Nauk SSSR 119 (1958), 861-864. Ya. G. Sinai, On the Concept of Entropy of a Dynamical System, Dokl. Akad. Nauk SSSR 124 (1959), 768-771. | Zbl 0083.10602
[012] [13] H. Narnhofer, E. Størmer and W. Thirring, C* Dynamical Systems for Which the Tensor Product Formula for Entropy Fails, Ergod. Th. & Dynam. Sys. 15 (1995), 961-968. | Zbl 0832.46059
[013] [14] H. Narnhofer and W. Thirring, C*-Dynamical Systems that Asymptotically are Highly Anticommutative, Lett. Math. Phys. 35 (1995), 145-154. | Zbl 0833.46051
[014] [15] G. Lindblad, Dynamical Entropy for Quantum Systems, in: Quantum Probability and Applications Vol. III, L. Accardi and W. von Waldenfels (eds.), Springer LNM 1303, Berlin, 1988, pp. 183-191.
[015] [16] M. Ohya and D. Petz, Quantum Entropy and Its Use, Springer Texts and Monographs in Physics, Berlin/Heidelberg/New York, 1993. | Zbl 0891.94008
[016] [17] R. T. Powers and G. L. Price, Binary Shifts on the Hyperfinite Factor, Contemporary Math. 145 (1993), 453-464. | Zbl 0813.46050
[017] [18] R. T. Powers and G. L. Price, Cocycle Conjugacy Classes of Shifts on the Hyperfinite Factor, J. Funct. Anal. 121 (1994), 275-295. | Zbl 0824.46068
[018] [19] G. L. Price, The Entropy of Rational Powers Shifts, preprint, Department of Mathematics, United States Naval Academy (Annapolis, Maryland), 1996.
[019] [20] E. Størmer and D. Voiculescu, Entropy of Bogoliubov Automorphisms of the Canonical Anticommutation Relations, Commun. Math. Phys. 133 (1990), 521-542. | Zbl 0743.46051
[020] [21] P. Tuyls, Towards Quantum Kolmogorov-Sinai Entropy, Ph.D. Thesis, Univ. Leuven, 1997. Quantization: Non-commutative Dynamical Entropy, Rep. Math. Phys. 38 (1996), 437-442. | Zbl 0897.60100
[021] [22] D. V. Voiculescu, Dynamical Approximation Entropies and Topological Entropy in Operator Algebras, Commun. Math. Phys. 170 (1995), 249-281. | Zbl 0824.46079