Dilation theorems for completely positive maps and map-valued measures
Hensz-Chądzyńska, Ewa ; Jajte, Ryszard ; Paszkiewicz, Adam
Banach Center Publications, Tome 43 (1998), p. 231-239 / Harvested from The Polish Digital Mathematics Library

The Stinespring theorem is reformulated in terms of conditional expectations in a von Neumann algebra. A generalisation for map-valued measures is obtained.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:208843
@article{bwmeta1.element.bwnjournal-article-bcpv43i1p231bwm,
     author = {Hensz-Ch\k adzy\'nska, Ewa and Jajte, Ryszard and Paszkiewicz, Adam},
     title = {Dilation theorems for completely positive maps and map-valued measures},
     journal = {Banach Center Publications},
     volume = {43},
     year = {1998},
     pages = {231-239},
     zbl = {0943.46038},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv43i1p231bwm}
}
Hensz-Chądzyńska, Ewa; Jajte, Ryszard; Paszkiewicz, Adam. Dilation theorems for completely positive maps and map-valued measures. Banach Center Publications, Tome 43 (1998) pp. 231-239. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv43i1p231bwm/

[000] [1] L. Accardi and M. Ohya, Compound channels, transition expectations and liftings, preprint.

[001] [2] O. Bratteli and D. W. Robinson, Operator algebras and quantum statistical mechanics, I, II New York-Heidelberg-Berlin, Springer, (1979). | Zbl 0421.46048

[002] [3] D. E. Evans and J. T. Lewis, Dilation of irreversible evolutions in algebraic quantum theory, Communications of the Dublin Institute for Advanced Studies, Series A (Theoretical Physics) 24 (1977).

[003] [4] E. Hensz-Chądzyńska, R. Jajte and A. Paszkiewicz, Dilation theorems for positive operator-valued measures, Probab. Math. Statist. 17 (1997), 365-375. | Zbl 0897.46030

[004] [5] K. R. Parthasarathy, A continuous time version of Stinespring's theorem on completely positive maps, Quantum probability and Applications V, Proceedings, Heidelberg 1988, L. Accardi, W. von Waldenfels (eds.), Lecture Notes Math., Springer-Verlag (1988).

[005] [6] W. F. Stinespring, Positive functions on C*-algebras, Proc. Amer. Math. Soc. 6 (1965), 211-216.

[006] [7] S. Strătilă, Modular theory in operator algebras, Editura Academiei, Bucuresti, Abacus Press (1981). | Zbl 0504.46043

[007] [8] S. Strătilă and L. Zsidó, Lectures on von Neumann algebras, Editura Academiei, Bucuresti, (1979). | Zbl 0391.46048

[008] [9] B. Sz.-Nagy, Extensions of linear transformations in Hilbert space which extend beyond this space, Appendix to: F. Riesz and B. Sz.-Nagy, Functional Analysis, Frederick Ungar Publishing Co.

[009] [10] M. Takesaki, Theory of operator algebras, I, Springer, Berlin-Heidelberg-New York (1979). | Zbl 0436.46043