The Stinespring theorem is reformulated in terms of conditional expectations in a von Neumann algebra. A generalisation for map-valued measures is obtained.
@article{bwmeta1.element.bwnjournal-article-bcpv43i1p231bwm, author = {Hensz-Ch\k adzy\'nska, Ewa and Jajte, Ryszard and Paszkiewicz, Adam}, title = {Dilation theorems for completely positive maps and map-valued measures}, journal = {Banach Center Publications}, volume = {43}, year = {1998}, pages = {231-239}, zbl = {0943.46038}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv43i1p231bwm} }
Hensz-Chądzyńska, Ewa; Jajte, Ryszard; Paszkiewicz, Adam. Dilation theorems for completely positive maps and map-valued measures. Banach Center Publications, Tome 43 (1998) pp. 231-239. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv43i1p231bwm/
[000] [1] L. Accardi and M. Ohya, Compound channels, transition expectations and liftings, preprint.
[001] [2] O. Bratteli and D. W. Robinson, Operator algebras and quantum statistical mechanics, I, II New York-Heidelberg-Berlin, Springer, (1979). | Zbl 0421.46048
[002] [3] D. E. Evans and J. T. Lewis, Dilation of irreversible evolutions in algebraic quantum theory, Communications of the Dublin Institute for Advanced Studies, Series A (Theoretical Physics) 24 (1977).
[003] [4] E. Hensz-Chądzyńska, R. Jajte and A. Paszkiewicz, Dilation theorems for positive operator-valued measures, Probab. Math. Statist. 17 (1997), 365-375. | Zbl 0897.46030
[004] [5] K. R. Parthasarathy, A continuous time version of Stinespring's theorem on completely positive maps, Quantum probability and Applications V, Proceedings, Heidelberg 1988, L. Accardi, W. von Waldenfels (eds.), Lecture Notes Math., Springer-Verlag (1988).
[005] [6] W. F. Stinespring, Positive functions on C*-algebras, Proc. Amer. Math. Soc. 6 (1965), 211-216.
[006] [7] S. Strătilă, Modular theory in operator algebras, Editura Academiei, Bucuresti, Abacus Press (1981). | Zbl 0504.46043
[007] [8] S. Strătilă and L. Zsidó, Lectures on von Neumann algebras, Editura Academiei, Bucuresti, (1979). | Zbl 0391.46048
[008] [9] B. Sz.-Nagy, Extensions of linear transformations in Hilbert space which extend beyond this space, Appendix to: F. Riesz and B. Sz.-Nagy, Functional Analysis, Frederick Ungar Publishing Co.
[009] [10] M. Takesaki, Theory of operator algebras, I, Springer, Berlin-Heidelberg-New York (1979). | Zbl 0436.46043