Stationary Quantum Markov processes as solutions of stochastic differential equations
Hellmich, Jürgen ; Köstler, Claus ; Kümmerer, Burkhard
Banach Center Publications, Tome 43 (1998), p. 217-229 / Harvested from The Polish Digital Mathematics Library

From the operator algebraic approach to stationary (quantum) Markov processes there has emerged an axiomatic definition of quantum white noise. The role of Brownian motion is played by an additive cocycle with respect to its time evolution. In this report we describe some recent work, showing that this general structure already allows a rich theory of stochastic integration and stochastic differential equations. In particular, if a quantum Markov process is represented by a unitary cocycle, we can reconstruct an additive cocycle ('quantum Brownian motion') and the unitary cocycle ('quantum Markov process') appears as the solution of a certain stochastic differential equation. This establishes a one-to-one correspondence between multiplicative and additive adapted cocycles. As an application of this result we construct stationary Markov processes, driven by squeezed white noise and q-white noise.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:208842
@article{bwmeta1.element.bwnjournal-article-bcpv43i1p217bwm,
     author = {Hellmich, J\"urgen and K\"ostler, Claus and K\"ummerer, Burkhard},
     title = {Stationary Quantum Markov processes as solutions of stochastic differential equations},
     journal = {Banach Center Publications},
     volume = {43},
     year = {1998},
     pages = {217-229},
     zbl = {0926.46048},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv43i1p217bwm}
}
Hellmich, Jürgen; Köstler, Claus; Kümmerer, Burkhard. Stationary Quantum Markov processes as solutions of stochastic differential equations. Banach Center Publications, Tome 43 (1998) pp. 217-229. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv43i1p217bwm/

[000] [AcLu] L. Accardi and Y.G. Lu, The Wigner semi-circle law in quantum electro dynamics, Comm. Math. Phys. 180, 605-632, 1996. | Zbl 0856.46047

[001] [AFL] L. Accardi, A. Frigerio and J. T. Lewis, Quantum stochastic processes, Publ. RIMS Kyoto 18, 97-133, 1982. | Zbl 0498.60099

[002] [AFQ] L. Accardi, F. Fagnola and J. Quaegebeur, A representation free quantum stochastic calculus, J. Funct. Anal. 104, 149-197, 1992. | Zbl 0759.60068

[003] [ApFr] D. Applebaum and A. Frigerio, Stationary dilations of W*-dynamical systems constructed via quantum stochastic differential equations, in: From local times to global geometry, control and physics (Coventry, 1984/85), Pitman Res. Notes Math. Ser., 150, 1-38, Longman Sci. Tech., Harlow 1986.

[004] [Ba] A. Barchielli, Applications of quantum stochastic calculus to quantum optics, Quantum probability & related topics, QP-PQ, VI, 111-125, 1991. | Zbl 0953.60529

[005] [Be] V. P. Belavkin, A new form and a *-algebraic structure of integrals in Fock space, Rend. Sem. Mat. Fis. Milano 58, 177-193, 1988. | Zbl 0708.60048

[006] [BiSp] P. Biane and R. Speicher, Stochastic calculus with respect to free Brownian motion and analysis on Wigner space, preprint, Paris, 1997.

[007] [BKS] M. Bożejko, B. Kümmerer and R. Speicher, q-Gaussian processes: non-commutative and classical aspects, Comm. Math. Phys. 185, 129-154, 1997. | Zbl 0873.60087

[008] [BoSp] M. Bożejko and R. Speicher, An example of generalized Brownian motion, Comm. Math. Phys. 137, 519-531, 1991. | Zbl 0722.60033

[009] [BSW] C. Barnett, R. F. Streater and I. F. Wilde, Quasi-free quantum stochastic integrals for the CAR and CCR, J. Funct. Anal. 52, 19-47, 1983. | Zbl 0513.60063

[010] [Fr] M. Frank, Self-duality and C*-reflexivity of Hilbert C*-moduli, Zeitschr. Anal. Anw. 9, 165-176, 1990.

[011] [GHJ] F. M. Goodman, P. de la Harpe and V. F. R. Jones, Coxeter Graphs and Towers of Algebras, Springer Verlag, New York, 1989. | Zbl 0698.46050

[012] [HKR] J. Hellmich, R. Honegger, C. Köstler, B. Kümmerer, A. Rieckers and C. Rupp, The quantum stochastic calculus of classical and non-classical squeezed white noise, preprint, Tübingen, 1997.

[013] [Hi] T. Hida, Brownian Motion, Springer Verlag, New York, 1980.

[014] [HuLi] R. L. Hudson and J. M. Lindsay, A noncommutative martingale representation theorem for non-Fock quantum Brownian motion, J. Funct. Anal. 61, 202-221, 1985. | Zbl 0577.60055

[015] [KFGV] A. Kossakowski, A. Frigerio, V. Gorini and M. Verri, Quantum detailed balance and KMS condition, Comm. Math. Phys. 57, 97-110, 1977. | Zbl 0374.46060

[016] [Kü1] B. Kümmerer, Markov dilations on W*-algebras, J. Funct. Anal. 63, 139-177, 1985. | Zbl 0601.46062

[017] [Kü2] B. Kümmerer, Stochastic processes with values in Mn as couplings to free evolutions, preprint, 1993.

[018] [KüMa] B. Kümmerer and H. Maassen, Elements of quantum probability, to appear in Quantum Probability Communications, X.

[019] [KüSp] B. Kümmerer and R. Speicher, Stochastic integration on the Cuntz algebra O, J. Funct. Anal. 103, 372-408, 1992. | Zbl 0787.46052

[020] [La] E. C. Lance, Hilbert C*-modules, London Mathematical Society Lecture Notes Series 210, 1995.

[021] [Me] P. A. Meyer, Quantum Probability for Probabilists, Springer Verlag, Berlin, Heidelberg, 1993.

[022] [P] K. R. Parthasarathy, An Introduction to Quantum Stochastic Calculus, Birkhäuser, Basel, 1992. | Zbl 0751.60046

[023] [Pa] W. L. Paschke, Inner product modules over B*-algebras, Trans. Amer. Math. Soc. 182, 443-468, 1973. | Zbl 0239.46062

[024] [Pr] J. Prin, Verallgemeinertes weißes Rauschen und nichtkommutative stochastische Integration, Diplomarbeit, Tübingen, 1989.

[025] [Sc] J. Schweizer, Interplay between noncommutative topology and operators on C*-algebras, thesis, Tübingen, 1996.

[026] [Sk] M. Skeide, Hilbert modules in quantum electro dynamics and quantum probability, to appear in Comm. Math. Phys. | Zbl 0928.46063