We establish circumstances under which the dispersion of passive contaminants in a forced flow can be consistently interpreted as a Markovian diffusion process.
@article{bwmeta1.element.bwnjournal-article-bcpv43i1p191bwm, author = {Garbaczewski, Piotr}, title = {Probability and quanta: why back to Nelson?}, journal = {Banach Center Publications}, volume = {43}, year = {1998}, pages = {191-199}, zbl = {0940.60092}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv43i1p191bwm} }
Garbaczewski, Piotr. Probability and quanta: why back to Nelson?. Banach Center Publications, Tome 43 (1998) pp. 191-199. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv43i1p191bwm/
[000] [1] Ph. Blanchard and P. Garbaczewski, Natural boundaries for the Smoluchowski equation and affiliated diffusion processes, Phys. Rev. E 49, (1994), 3815.
[001] [2] K. L. Chung and Z. Zhao, From Brownian Motion to Schrödinger Equation, Springer-Verlag, Berlin, 1995. | Zbl 0819.60068
[002] [3] M. Freidlin, Functional Integration and Partial Differential Equations, Princeton University Press, Princeton, 1985.
[003] [4] P. Garbaczewski, J. R. Klauder and R. Olkiewicz, Schrödinger problem, Lévy processes, and noise in relativistic quantum mechanics, Phys. Rev. E 51, (1995), 4114.
[004] [5] P. Garbaczewski and R. Olkiewicz, Feynman-Kac kernels in Markovian representations of the Schrödinger interpolating dynamics, J. Math. Phys. 37, (1996), 730. | Zbl 0869.60101
[005] [6] P. Garbaczewski, Schrödinger's interpolation problem through Feynman-Kac kernels, Acta Phys. Polon. B 27, (1996), 617. | Zbl 0966.82512
[006] [7] P.Garbaczewski and G. Kondrat, Burgers velocity fields and dynamical transport processes, Phys. Rev. Lett. 77, (1996), 2608.
[007] [8] P. Garbaczewski, G. Kondrat and R. Olkiewicz, Burgers flows as Markovian diffusion processes, Phys. Rev. E 55, (1997), 1401. | Zbl 0939.35201
[008] [9] W. Horsthemke and R. Lefever, Noise-Induced Transitions, Springer-Verlag, Berlin, 1984. | Zbl 0529.60085
[009] [10] C. Marchioro and M. Pulvirenti, Vortex methods in Two-Dimensional Fluid Dynamics, Lecture Notes in Physics 203, Springer-Verlag, Berlin, 1984. | Zbl 0545.76027
[010] [11] E. Nelson, Dynamical Theories of the Brownian Motion, Princeton University Press, Princeton, 1967. | Zbl 0165.58502
[011] [12] H. Spohn, Large Scale Dynamics of Interacting Particles, Springer-Verlag, Berlin, 1992. | Zbl 0742.76002
[012] [13] H. Risken, The Fokker-Planck Equation, Springer-Verlag, Berlin, 1989. | Zbl 0665.60084
[013] [14] E. Schrödinger, Relativistic electron, Ann. Inst. Henri Poincaré, 2, (1932), 269.
[014] [15] J. C. Zambrini, Variational processes and stochastic versions of mechanics, J. Math. Phys. 27, (1986), 3207. | Zbl 0623.60102